6 resultados para Aerobic and anaerobic metabolisms

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the enhancement of solar disinfection using custom-made batch reactors with reflective (foil-backed) or absorptive (black-backed) rear surfaces, under a range of weather conditions in India. Plate counts of Escherichia coli ATCC11775 were made under aerobic conditions and under conditions where reactive oxygen species (ROS) were neutralised, i.e. in growth medium supplemented with 0.05% w/v sodium pyruvate plus incubation under anaerobic conditions. While the addition of either an absorptive or a reflective backing enhanced reactor performance under strong sunlight, the reflective reactor was the only system to show consistent enhancement under low sunlight, where the process was slowest. Counts performed under ROS-neutralised conditions were slightly higher than those in air, indicating that a fraction of the cells become sub-lethally injured during exposure to sunlight to the extent that they were unable to grow aerobically. However, the influence of this phenomenon on the dynamics of inactivation was relatively small

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation is to find the hypoxic adaptations and role of carotenoids in the anaerobic catabolism of two intertidal bivalves-Sunetta scripta and Perna viridis. Physiological and cytological responses during hypoxic stress have been studied and compared to that of sublethal heavy metal (copper) exposure using two indices : total carotenoid concentration and accumulation of lipofuscin granules. A close similarity has been observed between hypoxic exposed and copper (sublethal) exposed animals regarding the total carotenoid concentration and lipofuscin accumulation. In the case of S.scripta, the total caroteniod increase at 48h of both hypoxic and heavy metal exposure was found to be nearly 40% greater than that of the control (0h). Whereas in P.viridis, the increment in the total carotenoid concentration at 48h of hypoxic exposure and 48h of heavy metal exposure were found to be nearly 87% and 95% higher than that of the control (0h) respectively.Regarding the lipofuscin accumulation, in both S.scripta and P.viridis , the characteristic features of the granule at 48h of hypoxia is very much similar to that observed at 48h of heavy metal exposure. Thus, the present study suggests that the increase in carotenoid concentration and lipofuscin accumulation expressed by bivalves under heavy metal stress can be due to the indirect effect of hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faculty of Engineering. Cochin University of Science and Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One thousand, two hundred and sixty four samples of individually quick-frozen (IQF) peeled and deveined raw and 914 samples of cooked ready to eat shrimp samples produced from farm raised black tiger (Penaeus monodon) obtained from a seafood unit working under HACCP concept were analysed for total aerobic plate count (APC), coliform count, Escherichia coli, coagulase positive Staphylococci and Salmonella. The overall bacteriological quality of the product was found to be good. Of the frozen raw shrimp, 96% of samples showed APC below 105 while 99% of the frozen cooked ready-to-eat samples showed APC less than 104. The APC ranged from 1·0´102 to 4·2´106 cfu/gm in frozen raw shrimp and from 1·0´102 to 6·4´104 cfu/gm in the frozen cooked shrimp. Prevalences of coliforms in raw shrimp and cooked shrimp samples were 14·4% and 2·9% respectively. The coliform count in raw products ranged from 1·0´101 to 2·5´103 cfu/gm and in the cooked products, from 1·0 ´101 to 1·8´102 cfu/gm. Although all the cooked shrimp samples were free of coagulase positive staphylococci, E. coli and Salmonella, 1·0, 2·0 and 0·1% of the frozen raw shrimp samples tested positive for coagulase positive Staphylococci, E. coli and Salmonella respectively. The Salmonella strain was identified as Salmonella typhimurium. The results of the present study highlight the importance of implementation of HACCP system in the seafood industry to ensure consistent quality of frozen seafood

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective solids-liquid separation is the basic concept of any wastewater treatment system. Biological treatment methods involve microorganisms for the treatment of wastewater. Conventional activated sludge process (ASP) poses the problem of poor settleability and hence require a large footprint. Biogranulation is an effective biotechnological process which can overcome the drawbacks of conventional ASP to a great extent. Aerobic granulation represents an innovative cell immobilization strategy in biological wastewater treatment. Aerobic granules are selfimmobilized microbial aggregates that are cultivated in sequencing batch reactors (SBRs). Aerobic granules have several advantages over conventional activated sludge flocs such as a dense and compact microbial structure, good settleability and high biomass retention. For cells in a culture to aggregate, a number of conditions have to be satisfied. Hence aerobic granulation is affected by many operating parameters. The organic loading rate (OLR) helps to enrich different bacterial species and to influence the size and settling ability of granules. Hence, OLR was argued as an influencing parameter by helping to enrich different bacterial species and to influence the size and settling ability of granules. Hydrodynamic shear force, caused by aeration and measured as superficial upflow air velocity (SUAV), has a strong influence and hence it is used to control the granulation process. Settling time (ST) and volume exchange ratio (VER) are also two key influencing factors, which can be considered as selection pressures responsible for aerobic granulation based on the concept of minimal settling velocity. Hence, these four parameters - OLR, SUAV, ST and VER- were selected as major influencing parametersfor the present study. Influence of these four parameters on aerobic granulation was investigated in this work

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.