7 resultados para Aerobic

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective solids-liquid separation is the basic concept of any wastewater treatment system. Biological treatment methods involve microorganisms for the treatment of wastewater. Conventional activated sludge process (ASP) poses the problem of poor settleability and hence require a large footprint. Biogranulation is an effective biotechnological process which can overcome the drawbacks of conventional ASP to a great extent. Aerobic granulation represents an innovative cell immobilization strategy in biological wastewater treatment. Aerobic granules are selfimmobilized microbial aggregates that are cultivated in sequencing batch reactors (SBRs). Aerobic granules have several advantages over conventional activated sludge flocs such as a dense and compact microbial structure, good settleability and high biomass retention. For cells in a culture to aggregate, a number of conditions have to be satisfied. Hence aerobic granulation is affected by many operating parameters. The organic loading rate (OLR) helps to enrich different bacterial species and to influence the size and settling ability of granules. Hence, OLR was argued as an influencing parameter by helping to enrich different bacterial species and to influence the size and settling ability of granules. Hydrodynamic shear force, caused by aeration and measured as superficial upflow air velocity (SUAV), has a strong influence and hence it is used to control the granulation process. Settling time (ST) and volume exchange ratio (VER) are also two key influencing factors, which can be considered as selection pressures responsible for aerobic granulation based on the concept of minimal settling velocity. Hence, these four parameters - OLR, SUAV, ST and VER- were selected as major influencing parametersfor the present study. Influence of these four parameters on aerobic granulation was investigated in this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yeasts are ubiquitous in their distribution and populations mainly depend on the type and concentration of organic materials. The distribution of species, as well as their numbers and metabolic characteristics were found to be governed by existing environmental conditions. Marine yeasts were first discovered from the Atlantic Ocean and following this discovery, yeasts were isolated from different sources, viz. seawater, marine deposits, seaweeds, fish, marine mammals and sea birds. Nearshore environments are usually inhabited by tens to thousands of cells per litre of water, whereas low organic surface to deep-sea oceanic regions contain 10 or fewer cells/litre. Aerobic forms are found more in clean waters and fermentative forms in polluted waters. Yeasts are more abundant in silty muds than in sandy sediments. The isolation frequency of yeasts fell as the depth of the sampling site is increased. Major genera isolated in this study were Candida, Cryptococcus, Debaryomyces and Rhodotorula. For biomass estimation ergosterol method was used. Classification and identification of yeasts were performed using different criteria, i.e. morphology, sexual reproduction and physiological/biochemical characteristics. Fatty acid profiling or molecular sequencing of the IGS and ITS regions and 28S gene rDNA ensured accurate identification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to determine the ability of specifically adapted bacteria to degrade phenol and to quantify the rate of biodegradation at. Different concentrations by mixed as well as individual isolates. Regular quantitative analysis of phenolics and aerobic phenololytic heterotrophs from five different ecosystems were done during 1990-1991, and the ability of microorganisms isolated from those areas, to utilize phenol, o-cresol and orcinol was also studied. In addition, data on environmental parameters like temperature, dissolved oxygen, salinity, pH, organic carbon and nutrients were also collected during the period of study The present study is one of its first kind in natural aquatic environment and has aimed to bring out some idea about the potential phenol biodegrades in such environments where the phenol concentration is beyond permitted level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrification is the biological oxidation of ammonium, first to nitrite and then to nitrate by two groups of aerobic, chemolithotrophic bacteria belonging to the family Nitrobacteriaceae. The biological nitrification in municipal wastewater treatment is important in those cases were ammonia removal requirement specially exist. In a trickling filter or in an activated sludge system nitrification is rate limiting and thus necessitates longer detention time. The combined carbon oxidation-nitrification processes generally have low population of nitrifiers due to a high ratio of BOD to total nitrogen in the effluent. This necessitates, separate carbon and nitrogen oxidation processes, which thus minimizes wash out ofthe nitrifiers. Therefore, a separate stage nitrification has become essential to achieve faster and efficient removal of ammonia from the wastewater. The present work deals with the development of bio reactor for nitrifying of sewage as the tertiary process so that the treated wastewater can be used for irrigation, algal culture or fish culture

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One thousand, two hundred and sixty four samples of individually quick-frozen (IQF) peeled and deveined raw and 914 samples of cooked ready to eat shrimp samples produced from farm raised black tiger (Penaeus monodon) obtained from a seafood unit working under HACCP concept were analysed for total aerobic plate count (APC), coliform count, Escherichia coli, coagulase positive Staphylococci and Salmonella. The overall bacteriological quality of the product was found to be good. Of the frozen raw shrimp, 96% of samples showed APC below 105 while 99% of the frozen cooked ready-to-eat samples showed APC less than 104. The APC ranged from 1·0´102 to 4·2´106 cfu/gm in frozen raw shrimp and from 1·0´102 to 6·4´104 cfu/gm in the frozen cooked shrimp. Prevalences of coliforms in raw shrimp and cooked shrimp samples were 14·4% and 2·9% respectively. The coliform count in raw products ranged from 1·0´101 to 2·5´103 cfu/gm and in the cooked products, from 1·0 ´101 to 1·8´102 cfu/gm. Although all the cooked shrimp samples were free of coagulase positive staphylococci, E. coli and Salmonella, 1·0, 2·0 and 0·1% of the frozen raw shrimp samples tested positive for coagulase positive Staphylococci, E. coli and Salmonella respectively. The Salmonella strain was identified as Salmonella typhimurium. The results of the present study highlight the importance of implementation of HACCP system in the seafood industry to ensure consistent quality of frozen seafood

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriological quality of individually quick frozen (IQF) shrimp products produced from aquacultured tiger shrimp (Penaeus monodon) has been analysed in terms of aerobic plate count (APC), coliforms, Escherichia coli, coagulase-positive staphylococci, Salmonella, and Listeria monocytogenes. Eight hundred forty-six samples of raw, peeled, and deveined tail-on (RPTO), 928 samples of cooked, peeled, and deveined tail-on (CPTO), 295 samples of headless, undeveined shell-on (HLSO), and 141 samples of raw, peeled, and deveined tail-off (RPND) shrimps were analysed for the above bacteriological parameters. Salmonella was isolated in only one sample of raw, peeled tail-on. Serotyping of the strain revealed that it was S. typhimurium. While none of the cooked, peeled tail-on shrimp samples exceeded the aerobic plate count (APC) of 105 colony forming units per gram (cfu/g), 2.5% of raw, peeled, tail-on, 6.4% of raw, peeled tail-off, and 7.5% of headless shell-on shrimp samples exceeded that level. Coliforms were detected in all the products, though at a low level. Prevalence of coliforms was higher in headless shell-on (26%) shrimps followed by raw, peeled, and deveined tail-off (19%), raw, peeled tail-on (10%), and cooked, peeled tail-on (3.8%) shrimps. While none of the cooked, peeled tail-on shrimp samples were positive for coagulase-positive staphylococci and E. coli, 0.6–1.3% of the raw, peeled tail-on were positive for staphylococci and E. coli, respectively. Prevalence of staphylococci was highest in raw, peeled tail-off (5%) shrimps and the highest prevalence of E. coli (4.8%) was noticed in headless shell-on shrimps. L. monocytogenes was not detected in any of the cooked, peeled tail-on shrimps. Overall results revealed that the plant under investigation had exerted good process control in order to maintain superior bacteriological quality of their products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the enhancement of solar disinfection using custom-made batch reactors with reflective (foil-backed) or absorptive (black-backed) rear surfaces, under a range of weather conditions in India. Plate counts of Escherichia coli ATCC11775 were made under aerobic conditions and under conditions where reactive oxygen species (ROS) were neutralised, i.e. in growth medium supplemented with 0.05% w/v sodium pyruvate plus incubation under anaerobic conditions. While the addition of either an absorptive or a reflective backing enhanced reactor performance under strong sunlight, the reflective reactor was the only system to show consistent enhancement under low sunlight, where the process was slowest. Counts performed under ROS-neutralised conditions were slightly higher than those in air, indicating that a fraction of the cells become sub-lethally injured during exposure to sunlight to the extent that they were unable to grow aerobically. However, the influence of this phenomenon on the dynamics of inactivation was relatively small