1 resultado para Adaptive object model
em Cochin University of Science
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (12)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (46)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (235)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (17)
- CentAUR: Central Archive University of Reading - UK (40)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (19)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (23)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (24)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (27)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (5)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (45)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (34)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Michigan (6)
- University of Queensland eSpace - Australia (150)
- University of Southampton, United Kingdom (3)
- University of Washington (4)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Detection of Objects in Video is a highly demanding area of research. The Background Subtraction Algorithms can yield better results in Foreground Object Detection. This work presents a Hybrid CodeBook based Background Subtraction to extract the foreground ROI from the background. Codebooks are used to store compressed information by demanding lesser memory usage and high speedy processing. This Hybrid method which uses Block-Based and Pixel-Based Codebooks provide efficient detection results; the high speed processing capability of block based background subtraction as well as high Precision Rate of pixel based background subtraction are exploited to yield an efficient Background Subtraction System. The Block stage produces a coarse foreground area, which is then refined by the Pixel stage. The system’s performance is evaluated with different block sizes and with different block descriptors like 2D-DCT, FFT etc. The Experimental analysis based on statistical measurements yields precision, recall, similarity and F measure of the hybrid system as 88.74%, 91.09%, 81.66% and 89.90% respectively, and thus proves the efficiency of the novel system.