3 resultados para Acropora digitifera, algal infection rate
em Cochin University of Science
Resumo:
The main objective of the present work is to acquire information regarding the growth responses of P. monodon larvae (from PZ1 upto PL1) to various mono specific and mixed diets. Evaluate the nutritional quality of selected species of micro algae viz. Chaetoceros calcitrans, Dunaliella salina, Isochrysis galbana and Nannochloropsis salina, larvae at three cell concentrations 10x104 cells/ml, 25x104 cells/ml and 50x104 cells/ml. The P. monodon larvae were transported, at the Nauplius stage, to the laboratory. The larvae were stocked at density of 150 larvae per litre in 5 litre FRP tanks with 3 litres of sea water. The algal cell density given to the larvae varied. The larval stages were fed with increasing densities of algae to evaluate the relationship between the food densities, ingestion rates, development and growth of the larvae. The water quality parameters, the percentage of survival rate, the growth estimation and the algal cell count were done. Each experiment was carried out in triplicate with a control group of larvae fed with Chaetoceros calcitrans. For the estimation standard procedures were used.to P. monodon
Resumo:
This study shows that the disease resistance and survival rate of Penaeus monodon in a larval rearing systems can be enhanced by supplementing with antagonistic or non-antagonistic probiotics. The antagonistic mode of action of Pseudomonas MCCB 102 and MCCB 103 against vibrios was demonstrated in larval mesocosm with cultures having su⁄cient concentration of antagonistic compounds in their culture supernatant. Investigations on the antagonistic properties of Bacillus MCCB 101, Pseudomonas MCCB 102 and MCCB 103 and Arthrobacter MCCB 104 against Vibrio harveyi MCCB111under in vitro conditions revealed that Pseudomonas MCCB 102 and MCCB 103 were inhibitory to the pathogen.These inhibitory propertieswere further con¢rmed in the larval rearing systems of P. monodon. All these four probionts signi¢cantly improved larval survival in long-term treatments as well as when challengedwith a pathogenic strain ofV. harveyiMCCB111. We could demonstrate that Pseudomonas MCCB 102 andMCCB103 accorded disease resistance and a higher survival rate in P. monodon larval rearing systems throughactive antagonism of vibrios,whereas Bacillus MCCB 101 and Arthrobacter MCCB 104 functioned as probiotics through immunostimulatory and digestive enzyme-supporting modes of action.
Resumo:
Influence of acute salinity stress on the immunological and physiological response of Penaeus monodon to white spot syndrome virus (WSSV) infection was analysed. P. monodon maintained at 15‰ were subjected to acute salinity changes to 0‰ and 35‰ in 7 h and then challenged orally with WSSV. Immune variables viz., total haemocyte count, phenol oxidase activity (PO), nitroblue tetrazolium salt (NBT) reduction, alkaline phosphatase activity (ALP), acid phosphatase activity (ACP) and metabolic variables viz., total protein, total carbohydrates, total free amino acids (TFAA), total lipids, glucose and cholesterol were determined soon after salinity change and on post challenge days 2 (PCD2) and 5 (PCD5). Acute salinity change induced an increase in metabolic variables in shrimps at 35‰ except TFAA. Immune variables reduced significantly (Pb0.05) in shrimps subjected to salinity stress with the exception of ALP and PO at 35‰ and the reduction was found to be more at 0‰. Better performance of metabolic and immune variables in general could be observed in shrimps maintained at 15‰ that showed significantly higher post challenge survival following infection compared to those under salinity stress. Stress was found to be higher in shrimps subjected to salinity change to lower level (0‰) than to higher level (35‰) as being evidenced by the better immune response and survival at 35‰. THC (Pb0.001), ALP (Pb0.01) and PO (Pb0.05) that together explained a greater percentage of variability in survival rate, could be proposed as the most potential health indicators in shrimp haemolymph. It can be concluded from the study that acute salinity stress induces alterations in the haemolymph metabolic and immune variables of P. monodon affecting the immunocompetence and increasing susceptibility to WSSV, particularly at low salinity stress conditions