8 resultados para Accelerated failure time Model. Correlated data. Imputation. Residuals analysis

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

So far, in the bivariate set up, the analysis of lifetime (failure time) data with multiple causes of failure is done by treating each cause of failure separately. with failures from other causes considered as independent censoring. This approach is unrealistic in many situations. For example, in the analysis of mortality data on married couples one would be interested to compare the hazards for the same cause of death as well as to check whether death due to one cause is more important for the partners’ risk of death from other causes. In reliability analysis. one often has systems with more than one component and many systems. subsystems and components have more than one cause of failure. Design of high-reliability systems generally requires that the individual system components have extremely high reliability even after long periods of time. Knowledge of the failure behaviour of a component can lead to savings in its cost of production and maintenance and. in some cases, to the preservation of human life. For the purpose of improving reliability. it is necessary to identify the cause of failure down to the component level. By treating each cause of failure separately with failures from other causes considered as independent censoring, the analysis of lifetime data would be incomplete. Motivated by this. we introduce a new approach for the analysis of bivariate competing risk data using the bivariate vector hazard rate of Johnson and Kotz (1975).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no baseline data available at present on the nature of various diseases that occur in a orchid population, under cultivation, in any commercial orchid farm maintained by small scale entrepreneurs who invest considerable amount of money, effort and time. The available data on type of disease symptoms, causative agent, , nature of pathogens, as to bacteria or ftmgi or any other biological agents, and their source, appropriate and effective control measures could not be devised, for large scale implementation and effective management, although arbitrary methods are being practiced by very few farms. Further influence of seasonal variations and environmental factors on disease outbreak is also not scientifically documented and statistically verified as to their authenticity. In this context, the primary objective of the present study was to create a data bank on the following aspects 1. Occurrence of different disease symptoms in Dendrobium hybrid over a period of one year covering all seasons 2. Variations in the environmental parameters at the orchid farms 3. Variations in the characteristics of water used for irrigation in the selected orchid farm 4. Microbial population associated with the various disease symptoms 5. Isolation and identification of bacteria isolated from diseased plants 6. Statistical treatment of the quantitative data and evolving statistical model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to investigate the role of operational flexibility for effective project management in the construction industry. The specific objectives are to: a) Identify the determinants of operational flexibility potential in construction project management b) Investigate the contribution of each of the determinants to operational flexibility potential in the construction industry c) Investigate on the moderating factors of operational flexibility potential in a construction project environment d) Investigate whether moderated operational flexibility potential mediates the path between predictors and effective construction project management e) Develop and test a conceptual model of achieving operational flexibility for effective project management The purpose of this study is to findout ways to utilize flexibility inorder to manage uncertain project environment and ultimately achieve effective project management. In what configuration these operational flexibility determinants are demanded by construction project environment in order to achieve project success. This research was conducted in three phases, namely: (i) exploratory phase (ii) questionnaire development phase; and (iii) data collection and analysis phase. The study needs firm level analysis and therefore real estate developers who are members of CREDAI, Kerala Chapter were considered. This study provides a framework on the functioning of operational flexibility, offering guidance to researchers and practitioners for discovering means to gain operational flexibility in construction firms. The findings provide an empirical understanding on kinds of resources and capabilities a construction firm must accumulate to respond flexibly to the changing project environment offering practitioners insights into practices that build firms operational flexibility potential. Firms are dealing with complex, continuous changing and uncertain environments due trends of globalization, technical changes and innovations and changes in the customers’ needs and expectations. To cope with the increasingly uncertain and quickly changing environment firms strive for flexibility. To achieve the level of flexibility that adds value to the customers, firms should look to flexibility from a day to day operational perspective. Each dimension of operational flexibility is derived from competences and capabilities. In this thesis only the influence on customer satisfaction and learning exploitation of flexibility dimensions which directly add value in the customers eyes are studied to answer the followingresearch questions: “What is the impact of operational flexibility on customer satisfaction?.” What are the predictors of operational flexibility in construction industry? .These questions can only be answered after answering the questions like “Why do firms need operational flexibility?” and “how can firms achieve operational flexibility?” in the context of the construction industry. The need for construction firms to be flexible, via the effective utilization of organizational resources and capabilities for improved responsiveness, is important because of the increasing rate of changes in the business environment within which they operate. Achieving operational flexibility is also important because it has a significant correlation with a project effectiveness and hence a firm’s turnover. It is essential for academics and practitioners to recognize that the attainment of operational flexibility involves different types namely: (i) Modification (ii) new product development and (iii) demand management requires different configurations of predictors (i.e., resources, capabilities and strategies). Construction firms should consider these relationships and implement appropriate management practices for developing and configuring the right kind of resources, capabilities and strategies towards achieving different operational flexibility types.