21 resultados para Absorption coefficient, 493 nm

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present the spectral and nonlinear optical properties of ZnO–TiO2 nanocomposites prepared by colloidal chemical synthesis. Emission peaks of ZnO–TiO2 nanocomposites change from 340 nm to 385 nm almost in proportion to changes in Eg. The nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increase with increasing TiO2 volume fraction at 532 nm and can be attributed to the enhancement of exciton oscillator strength. ZnO–TiO2 is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36 x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104 oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we report measurements of third-order susceptibility χ(3), figure of merit F defined as χ(3)/α (where α is the absorption coefficient) and second hyperpolarizability 〈γ〉 of some metal substituted phthalocyanines and a naphthalocyanine in solutions of dimethyl formamide using degenerate four wave mixing at 532 nm under nanosecond excitation. It was found that among samples investigated, bis-naphthalocyanine possessed the highest value of 〈γ〉 followed by the bis-phthalocyanine. This observation is explained on the basis that bis-naphthalocyanine followed by bis-phthalocyanine has higher degree of π electron conjugation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Third order nonlinear susceptibility χ(3) and second hyperpolarizability (γ) of a bis-naphthalocyanine viz. europium naphthalocyanines, Eu(Nc)2, were measured in dimethyl formamide solution using degenerate four wave mixing at 532 nm under nanosecond pulse excitation. Effective nonlinear absorption coefficient, βeff and imaginary part of nonlinear susceptibility, Im(χ(3)) were obtained using open aperture /Z-scan technique at the same wavelength. Optical limiting property of the sample was also investigated. The role of excited state absorption in deciding the nonlinear properties of this material is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical absorption studies of phthalocyanines (Pc-s) in borate glass matrix have been reported for the first time. Measurements have been done corresponding to photon energies between 1.1 and 6.2 eV for free base, manganese, iron, nickel, molybdenum, cobalt and copper phthalocyanines. Several new discrete transitions are observed in the UV–vis region of the spectra in addition to a strong continuum component of absorption in the IR region. Values of some of the important optical constants viz. absorption coefficient (α), molar extinction coefficient (ε), absorption cross-section (σa), band width (Δλ), electric dipole strength (q2) and oscillator strength (f) for the relevant electronic transitions are also presented. All the data reported for Pc-s in the new matrix have been compared with those corresponding to solution, vapor and thin film media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the preparation and dielectric properties of poly o-toluidine:poly vinyl chloride composites in pellet and film forms. The composites were prepared using ammonium persulfate initiator and HCl dopant. The characterization is done by TGA and DSC. The dielectric properties including dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, absorption coefficient, and penetration depth were studied in the microwave field. An HP8510 vector network analyzer with rectangular cavity resonator was used for the study. Sbands (2-4 GHz), C band (5-8 GHz), and X band (8-12 GHz) frequencies were used in the microwave field. Comparisons between the pellet and film forms of composites were also included. The result shows that the dielectric properties in the microwave field are dependent on the frequency and on the method of preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave properties of conductive polymers is crucial because of their wide areas of applications such as coating in reflector antennas, coating in electronic equipments, firequenry selective .surfaces, EMI materials, satellite communication links, microchip antennas, and medical applications. This work involves a comparative study of dielectric properties of selected conducting polymers such as polyaniline. poly(3,4-eth),lenedio.syt2iophene), polvthiophene, polvpvrrole. and pohparaphenylene diazomethine (PPDA) in microwave and DC,fields. The inicrowave properties such as dielectric constant, dielectric loss. absorption coefficient, heating coefficient, skin depth, and conductivity in the microwave frequency (S hand), and DC fields were compared. PEDOT and polccuiiline were found to exhibit excellent properties in DC field and microwave frequencies, which make thein potential materials in many of the alorenientioned applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications