7 resultados para ANSYS FEM APDL
em Cochin University of Science
Resumo:
This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed T-beams having a shear span to depth ratio of 2.65 and 1.59 that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, bond-slip of longitudinal reinforcement, postcracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging action of steel fibers at crack interface. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcement such as deformed bars, prestressing wires and steel fibers have been modeled discretely using ‘LINK8’ – 3D spar element. The slip between the reinforcement (rebars, fibers) and the concrete has been modeled using a ‘COMBIN39’- nonlinear spring element connecting the nodes of the ‘LINK8’ element representing the reinforcement and nodes of the ‘SOLID65’ elements representing the concrete. The ‘ANSYS’ model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.
Resumo:
Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.
Resumo:
Effect of L-prolyl-cinagta tlheep spyo atenndt idaol paanmti-iPnaer/nkeinusroonleiapnti cp rreocpeeprttoiers b oifn dLi-npgrso.lyPl E-LP-TleIuDcEylS- g2l(y1c)Li n1-a0lem5u-ic1dy1el1-g,(Ply1Lc9iG8n1)a. mw-Taidhsee i nm(vPeeLcstGhiag) anotinesmd n ie onuf rb oaelchetapiovtinico -suuirnbadslu eacrnevddetnarflefetueeacrrtmto a coephfnp ePtrmLe(2icGc0iaa, lob4 mnl0y io atndnhedevl sii8tn r0oto fem dndgosoi ppktyaag mm o-1fii nn tSeehCr/eng cteiwcau tfiracuolenle edpcptattiiioiclcny r r feienoscrp et ohfpinetvos erer ad ebtali.iyncAsdit)cienusdgit ge bin nyai dfrhimacaatli nonsttpilrseytirar aiatdtuttoimeolnn u(a3aso tmfde PidgfL f hkeGargel -o(n'p2tI0ieaPr ali)ldn.y odB ll ay4-b 0icne omldlneugtdc rk eabgdsy t - c1,aa pcSthoaCrmleo)ponfrsaicypil .heP TidLn hteGoe pahnidn esp tior odpoepraimdoinl ew raesc aelpstoo ersx ainm tihnee dst.rPiaLtuGm s,elbeuctt ihvaedly n eon ehfafneccte don t h['eH a]ffsipniirtoyp oefr tidhoel sbpiencdifinicg .b Tinhdei nbge hoafv aigouonraislt an[3dH b] iaopcohmemori-- cal results obtained in the present study raise the possibility that PLG may facilitate nigro-striatal dopaminergic neurotransmission through interacting with a unique PLG receptor functionally coupled to the dopamine receptor cyclase complex. -adenylate
Resumo:
This thesis describes the development and analysis of an Isosceles Trapezoidal Dielectric Resonator Antenna (ITDRA) by realizing different DR orientations with suitable feed configurations enabling it to be used as multiband, dual band dual polarized and wideband applications. The motivation for this work has been inspired by the need for compact, high efficient, low cost antenna suitable for multi band application, dual band dual polarized operation and broadband operation with the possibility of using with MICs, and to ensure less expensive, more efficient and quality wireless communication systems. To satisfy these challenging demands a novel shaped Dielectric Resonator (DR) is fabricated and investigated for the possibility of above required properties by trying out different orientations of the DR on a simple microstrip feed and with slotted ground plane as well. The thesis initially discusses and evaluates recent and past developments taken place within the microwave industry on this topic through a concise review of literature. Then the theoretical aspects of DRA and different feeding techniques are described. Following this, fabrication and characterization of DRA is explained. To achieve the desired requirements as above both simulations and experimental measurements were undertaken. A 3-D finite element method (FEM) electromagnetic simulation tool, HFSSTM by Agilent, is used to determine the optimum geometry of the dielectric resonator. It was found to be useful in producing approximate results although it had some limitations. A numerical analysis technique, finite difference time domain (FDTD) is used for validating the results of wide band design at the end. MATLAB is used for modeling the ITDR and implementing FDTD analysis. In conclusion this work offers a new, efficient and relatively simple alternative for antennas to be used for multiple requirements in the wireless communication system.
Resumo:
The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.
Resumo:
A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed
Resumo:
Hat Stiffened Plates are used in composite ships and are gaining popularity in metallic ship construction due to its high strength-to-weight ratio. Light weight structures will result in greater payload, higher speeds, reduced fuel consumption and environmental emissions. Numerical Investigations have been carried out using the commercial Finite Element software ANSYS 12 to substantiate the high strength-to-weight ratio of Hat Stiffened Plates over other open section stiffeners which are commonly used in ship building. Analysis of stiffened plate has always been a matter of concern for the structural engineers since it has been rather difficult to quantify the actual load sharing between stiffeners and plating. Finite Element Method has been accepted as an efficient tool for the analysis of stiffened plated structure. Best results using the Finite Element Method for the analysis of thin plated structures are obtained when both the stiffeners and the plate are modeled using thin plate elements having six degrees of freedom per node. However, one serious problem encountered with this design and analysis process is that the generation of the finite element models for a complex configuration is time consuming and laborious. In order to overcome these difficulties two different methods viz., Orthotropic Plate Model and Superelement for Hat Stiffened Plate have been suggested in the present work. In the Orthotropic Plate Model geometric orthotropy is converted to material orthotropy i.e., the stiffeners are smeared and they vanish from the field of analysis and the structure can be analysed using any commercial Finite Element software which has orthotropic elements in its element library. The Orthotropic Plate Model developed has predicted deflection, stress and linear buckling load with sufficiently good accuracy in the case of all four edges simply supported boundary condition. Whereas, in the case of two edges fixed and other two edges simply supported boundary condition even though the stress has been predicted with good accuracy there has been large variation in the deflection predicted. This variation in the deflection predicted is because, for the Orthotropic Plate Model the rigidity is uniform throughout the plate whereas in the actual Hat Stiffened Plate the rigidity along the line of attachment of the stiffeners to the plate is large as compared to the unsupported portion of the plate. The Superelement technique is a method of treating a portion of the structure as if it were a single element even though it is made up of many individual elements. The Superelement has predicted the deflection and in-plane stress of Hat Stiffened Plate with sufficiently good accuracy for different boundary conditions. Formulation of Superelement for composite Hat Stiffened Plate has also been presented in the thesis. The capability of Orthotropic Plate Model and Superelement to handle typical boundary conditions and characteristic loads in a ship structure has been demonstrated through numerical investigations.