6 resultados para ALGA MICROCYSTIS-AERUGINOSA

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study,heterotrophic protease producing bacterial isolates were screened for protease activity and a potent protease producing bacterial isolate was selected,identified and coded as Pseudomonas aeruginosa MCCB 123.The organism was capable of producing three different types of enzymes each having potential industrial applications.The non-toxic nature of the bacterial strain and the relatively non-toxic nature of three enzymes suggested their poetential application in various industries.Application of LasA protease and beta-1,3 glucanase in DNA extraction is a promising area for commercial utilization. LasB protease can find its potential application in detergent and tanning industries.As on today Bacillus sp.has been the source of commercial proteases,and the ones produced form P.aeruginosa 123 can pave way for making the industrial and biomedical processes more cost effective and refined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the importance of diversity of micro algae in our ecosystem and new invasion of many organisms, an attempt was made to monitor the Cochin estuary along the south west coast of India for the qualitative distribution of phytoplankton and to study the growth kinetics and allelopathic effect of the phaeocystis sp. Isolated from the cochin estuary. Phaeocystis blooms are common only in high latitude environments and they rarely occur in low latitude environments such as tropics and subtropics. As phaeocystis is grouped under harmful alga ,in the present study the factors causing the blooms formation in the ecosystem. The nutrient concentration of the water body along with other physiochemical parameters that includes temperature salinity and ph play an important role in triggering the bloom of phaeocystis .The phaeocystis harbor specific bacterial flora associated with it and they exert an important role in the growth ,haemolytic activity and the bloom phases of the alga. The harmful alga mainly depends on the production of alleopathic compounds for the establishment of bloom in the marine environments .These physiological properties of the phaecystis were considered for the study, along with the role of nutrients in the allelopathic and hemolytic activity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyocyanin is a versatile and multifunctional phenazine, widely used as a bio-control agent. Besides its toxicity in higher concentration, it has been applied as bio-control agents against many pathogens including the Vibrio spp. in aquaculture systems. The exact mechanism of the production of pyocyanin in Pseudomonas aeruginosa is well known, but the genetic modification of pyocyanin biosynthetic pathways in P. aeruginosa is not yet experimented to improve the yield of pyocyanin production. In this context, one of the aims of this work was to improve the yield of pyocyanin production in P. aeruginosa by way of increasing the copy number of pyocyanin pathway genes and their over expression. The specific aims of this work encompasses firstly, the identification of probiotic effect of P. aeruginosa isolated from various ecological niches, the overexpression of pyocyanin biosynthetic genes, development of an appropriate downstream process for large scale production of pyocyanin and its application in aquaculture industries. In addition, this work intends to examine the toxicity of pyocyanin on various developmental stages of tiger shrimp (Penaeus monodon), Artemia nauplii, microbial consortia of nitrifying bioreactors (Packed Bed Bioreactor, PBBR and Stringed Bed Suspended Bioreactor, SBSBR) and in vitro cell culture systems from invertebrates and vertebrates. The present study was undertaken with a vision to manage the pathogenic vibrios in aquaculture through eco-friendly and sustainable management strategies with the following objectives: Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture.,Saline dependent production of pyocyanin in Pseudomonas aeruginosa originated from different ecological niches and their selective application in aquaculture,Cloning and overexpression of Phz genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in Pseudomonas aeruginosa MCCB117,Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compoundToxicity of pyocyanin on various biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a valuable research work in which authors have demonstrated the antagonistic effects of pseudomonas on the growth of vibrio

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas aeruginosa MCCB 123 was grown in a synthetic medium for β-1,3 glucanase production. From the culture filtrate, β-1,3 glucanase was purified with a molecular mass of 45 kDa. The enzyme was a metallozyme as its β-1,3 glucanase activity got inhibited by the metal chelator EDTA. Optimum pH and temperature for β-1,3 glucanase activity on laminarin was found to be 7 and 50 °C respectively. The MCCB 123 β-1,3 glucanase was found to have good lytic action on a wide range of fungal isolates, and hence its application in fungal DNA extraction was evaluated. β-1,3 glucanase purified from the culture supernatant of P. aeruginosa MCCB 123 could be used for the extraction of fungal DNA without the addition of any other reagents generally used. Optimum pH and temperature of enzyme for fungal DNA extraction was found to be 7 and 65 °C respectively. This is the first report on β-1,3 glucanase employed in fungal DNA extraction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability