11 resultados para ACID CATALYSTS

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of dimethyl acetals of carbonyl compounds such as cyclohexanone, acetophenone, and benzophenone has successfully been carried out by the reaction between ketones and methanol using different solid acid catalysts. The strong influence of the textural properties of the catalysts such as acid amount and adsorption properties (surface area and pore volume) determine the catalytic activity. The molecular size of the reactants and products determine the acetalization ability of a particular ketone. The hydrophobicity of the various rare earth exchanged Mg–Y zeolites, K-10 montmorillonite clay, and cerium exchanged montmorillonite (which shows maximum activity) is more determinant than the number of active sites present on the catalyst. The optimum number of acidic sites as well as dehydrating ability of Ce3+-montmorillonite and K-10 montmorillonite clays and various rare earth exchanged Mg–Y zeolites seem to work well in shifting the equilibrium to the product side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green chemistry boots eco-friendly,natural clays as catalysts in the chemical as well as in the pharmaceutical industry.Industry demands thermal stability,mechanical strength etc for the catalyst and there the modification methods becomes important.Pillaring tunes clays as efficient catalytic templates for shape selective organic synthesis.Here pillared clays are used as promising alternatives for the environmentally hazardous homogeneous catalysts in some industrially important Friedel-Crafts alkylation reactions of arenes with lower alchohols and higher olefins.The layer structure is enhanced upon pillaring and allows the nanocomposite formation with polyaniline to develop today’s nanoscale diameter devices.Present work gives an entry of pillared clays to the world of conducting composite nanofibers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rare earth metal ion exchanged (La3+, Ce3+, RE3+) KFAU-Y zeolites were prepared by simple ion-exchange methods and have been characterized using different physico-chemical techniques. In this paper a novel application of solid acid catalysts in the dehydration/ Beckmann rearrangement of aldoximes; benzaldoxime and 4-methoxybenzaldoxime is reported. Dehydration/Beckmann rearrangement reactions of benzaldoxime and 4-methoxybenzaldoxime is carried out in a continuous down flow reactor at 473K. 4-Methoxybenzaldoxime gave both Beckmann rearrangement product (4-methoxyphenylformamide) and dehydration product (4-methoxybenzonitrile) in high overall yields. The difference in behavior of the aldoximes is explained in terms of electronic effects. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream studies show a fast decline in the activity of the catalyst due to neutralization of acid sites by the basic reactant and product molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dimethylacetals of ketones; cyclohexanone, acetophenone, and benzophenone have been prepared by reacting ketones with methanol under mild reaction conditions. Large pore zeolites (H-Y and its rare earth metal, Ce3+, La3+, and RE3+ modified forms), and mesoporous clay (K-10 montmorillonite and its cerium exchanged counterpart) with regular pore structure, silica and silica-alumina have been used as catalysts. Clay catalysts are found to be much more active than zeolites, thanks to slightly bigger pore size. The nature of the pores of the solid acid catalysts determine acetalization efficiency of a particular catalyst. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolites than over the clays. Carrying out the reaction with ketones of different molecular sizes it is shown that K-10 clays and rare earth exchanged H-Y zeolites are promising environmentally friendly catalysts for their use in the production fine chemicals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a novel application of solid acid catalysts in the Beckmann rearrangement of E,E-cinnamaldoxime in the synthesis of an important heterocyclic compound; isoquinoline is reported. E,E-Cinnamaldoxime under ambient reaction conditions on zeolite catalysts underwent Beckmann rearrangement to produce isoquinoline in yields of ca. 86–95%. Cinnamonitrile and cinnamaldehyde were formed as by-products. LaH-Y zeolite produces maximum amount of the desired product (yield 95.6%). However, the catalysts are susceptible for deactivation due to the basic nature of the reactants and products, which neutralize the active sites. H-Y zeolite is more susceptible (22% deactivation in 10 h) for deactivation compared to the cerium-exchanged counterpart (18% deactivation in 10 h). Thus, the optimal protocol allows isoquinoline to be synthesised in excellent yields through the Beckmann rearrangement of cinnamaldoxime. The reaction is simple, effective, does not involve any other additives, and environmentally benign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involves catalysis.Solid acid catalysts are appealing since the nature of acid sites is known and their chemical behavior in acid catalyzed reactions can be rationalized by means of existing theories and models. Mixed oxides crystallizing in spinel structure are of special interest because the spinel lattice imparts extra stability to the catalyst under various reaction conditions so that theses systems have sustained activities for longer periods. The thesis entitled" Catalysis By Ferrites And Cobaltites For The Alkylation And Oxidation Of Organic Compounds " presents the preparation ,characterization ,and activity studies of the prepared spinels were modified by incorporating other ions and by changing the stoichiometry.The prepared spinels exhibiting better catalytic activity towards the studied reactions with good product selectivity.Acid-base properties and cation distribution of the spinels were found to control the catalytic activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron donor properties of Nd2O3 activated at 300, 500 and 800°C were investigated through studies on the adsorption of electron acceptors of various electron affinities - 7, 7, 8,8-tetracyanoquinodimethane (2.84 eV). 2, 3, 5, 6-tetrachloro-l , 4-benzoquinone (2.40 eV). p-dinitrobenzene (1.77 eV), and m-dinitrobenzene (1.26 eV) in solvents acetonitrile and 1, 4-dioxan. The extent of electron transfer during adsorption has been found from magnetic measurements and electronic spectral data. The corresponding data on mixed oxides of neodymium and aluminium are reported for various. compositions. The acid-base properties of catalysts were also determined using a set of Hammett indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid/base strength distribution of Y2O3 and its mixed oxides with alumina catalysts are measured on Hammett acidity function scale and expressed in terms of H0max value. Basicity of Y2O3 increases with increase in activation temperature and for mixed oxides the basicity increases with increase in concentration of Y2O3, in the catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron-donor properties of Sm2O3 activated at 300, 500, and 800°C are reported from studies on the adsorption of electron acceptors of various electron affinities (electron affinity values in eV are given in parentheses): 7,7,8,8-tetracyanoquino-dimethane (2.84), 2,3,5,6-tetrachloro-1,4-benzoquinone (2.40), p-dinitrobenzene (1.77), and m-dinitrobenzene (1.26) in acetonitrile and 1,4-dioxane. The extent of electron transfer during the adsorption was determined from magnetic measurements. The acid-base properties of Sm2O3 at different activation temperatures are reported using a set of Hammett indicators. Electron donor-acceptor interactions at interfaces are important in elucidating the adhesion forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclohexanol decomposition activity of supported vanadia catalysts is ascribed to the high surface area, total acidity and interaction between supported vanadia and the amorphous support. Among the supported catalysts, the effect of vanadia over various wt% V2O5 (2–10) loading indicates that the catalyst comprising of 6 wt% V2O5 exhibits higher acidity and decomposition activity. Structural characterization of the catalysts has been done by techniques like energy dispersive X-ray analysis, X-ray diffraction and BET surface area. Acidity of the catalysts has been measured by temperature programmed desorption using ammonia as a probe molecule and the results have been correlated with the activity of catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.