2 resultados para 660302 Gas distribution

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A silver target kept under partial vacuum conditions was irradiated with focused nanosecond pulses at 1:06 mm from a Nd:YAG laser. The electron emission monitored with a Langmuir probe shows a clear twin-peak distribution. The first peak which is very sharp has only a small delay and it indicates prompt electron emission with energy as much as 60 5 eV. Also the prompt electron emission shows a temporal profile with a width that is same as that for the laser pulse whereas the second peak is broader, covers several microseconds, and represents the low-energy electrons (2 0:5 eV) associated with the laser-induced silver plasma as revealed by time-of-flight measurements. It has been found that prompt electrons ejected from the target collisionally excite and ionize ambient gas molecules. Clearly resolved rotational structure is observed in the emission spectra of ambient nitrogen molecules. Combined with time-resolved spectroscopy, the prompt electrons can be used as excitation sources for various collisional excitation–relaxation experiments. The electron density corresponding to the first peak is estimated to be of the order of 1017 cm?--3 and it is found that the density increases as a function of distance away from the target. Dependence of probe current on laser intensity shows plasma shielding at high laser intensities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced plasma generated from a silver target under partial vacuum conditions using the fundamental output of nanosecond duration from a pulsed Nd:yttrium aluminum garnet laser is studied using a Langmuir probe. The time of flight measurements show a clear twin peak distribution in the temporal profile of electron emission. The first peak has almost the same duration as the laser pulse while the second lasts for several microseconds. The prompt electrons are energetic enough ('60 eV) to ionize the ambient gas molecules or atoms. The use of prompt electron pulses as sources for electron impact excitation is demonstrated by taking nitrogen, carbon dioxide, and argon as ambient gases.