5 resultados para 530
em Cochin University of Science
Resumo:
We consider a resistively shunted Josephson junction with a resistance that depends inversely on voltage. It is shown that such a junction in the underdamped case can give rise to extremely long-lived metastable states even in the absence of external noise. We investigate numerically this metastable state and its transition to a chaotic state. The junction voltages corresponding to these states are studied.
Resumo:
In this article we present size dependent spectroscopic observations of nanocolloids of ZnO. ZnO is reported to show two emission bands, an ultraviolet (UV) emission band and another in the green region. Apart from the known band gap 380 nm and impurity 530 nm emissions, we have found some peculiar features in the fluorescence spectra that are consistent with the nanoparticle size distribution. Results show that additional emissions at 420 and 490 nm are developed with particle size. The origin of the visible band emission is discussed. The mechanism of the luminescence suggests that UV luminescence of ZnO colloid is related to the transition from conduction band edge to valence band, and visible luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies and by the transition from conduction band to deep acceptor level due to impurities and defect states. A correlation analysis between the particle size and spectroscopic observations is also discussed.
Resumo:
Excitation and emission spectra of SrS : Mn : Ce phosphors have been studied in detail at various Mn and Ce concentrations. In order to study the effect of external pressure on phosphors, the samples were pretreated under various pressures. Four bands around 470 nm, 530 nm, 310 nm and 620 nm were observed, when the samples were excited with 265 nm radiation. The effect of pressure is to reduce the fluorescence ability of the phosphors, and the luminescence vanishes above O· 1 ton m-2 pressure. The fluorescence ability, however, can be regained on retiring the sample. The emission mechanism has been attributed to two luminescentcenters in the forbidden gap. An appreciable amount of photocurrent has also been observed for the sample.
Resumo:
The length – weight relationship and relative condition factor of the shovel nose catfish, Arius subrostratus (Valenciennes, 1840) from Champakkara backwater were studied by examination of 392 specimens collected during June to September 2008. These fishes ranged from 6 to 29 cm in total length and 5.6 to 218 g in weight. The relation between the total length and weight of Arius subrostratus is described as Log W = -1.530+2.6224 log L for males, Log W = - 2.131 + 3.0914 log L for females and Log W = - 1.742 + 2.8067 log L for sexes combined. The mean relative condition factor (Kn) values ranged from 0.75 to 1.07 for males, 0.944 to 1.407 for females and 0.96 to 1.196 for combined sexes. The length-weight relationship and relative condition factor showed that the well-being of A. subrostratus is good. The morphometric measurements of various body parts and meristic counts were recorded. The morphometric measurements were found to be non-linear and there is no significant difference observed between the two sexes. From the present investigation, the fin formula can be written as D: I, 7; P: I, 12; A: 17 – 20; C: 26 – 32. There is no change in meristic counts with the increase in body length.
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product