22 resultados para 5-HT2A receptor

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal dopamine and serotonin receptors are widely distributed in the central and the peripheral nervous systems at different levels. Dopaminergic and serotonergic systems have crucial role in aldehyde dehydrogenase regulation Stimulation of autonomic nervous system during ethanol treatment is suggested to be an important factor in regulating the ALDH function. The ALDH enzyme activity was increased in plasma, cerebral cortex, and liver but decreased in cerebellum. The ALDH enzyme affinity was decreased in plasma, brainstem and liver and increased in cerebral cortex and cerebellum. Dopamine and serotonin content decreased in liver and brain regions - cerebral cortex, corpus striatum of ethanol treated rats with an increased HVA/DA, 5-HIAA/5-HT tumover rate. Dopamine content decreased in brainstem with an increased HVA/DA turnover rate and serotonin content decreased with an increased 5-HIAA/5-HT turnover rate in the brainstem of ethanol treated rats compared to control. Serotonin content increased in hypothalamus with a decreased 5-HIAA/5—HT turnover rate where as dopamine content decreased in hypothalamus with an increased HVA/DA tumover rate of ethanol treated rats compared to control.alterations of DA D2 and 5-HTQA receptor function and gene expression in the cerebellum, hypothalamus, corpus striatum, cerebral cortex play an important role in the sympathetic regulation of ALDH enzyme in ethanol addiction. There is a serotonergic and dopaminergic functional regulation of ALDH activity in the brain regions and liver of ethanol treated rats. Gene expression studies of DA D2 and 5'HT2A studies confirm these observations. Perfusion studies using DA, 5-HT and glucose showed ALDH regulatory function. Brain activity measeurement using EEG showed a prominentfrontal brain wave difference. This will have immense clinical significance in the management of ethanol addiction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is an attempt to understand the role of 5-HT, 5-HT1A and 5-HT2C receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain serotonergic changes associated with hapatocyte proliferation and apoptosis to delineate its regulatory function. The investigation of mechanisms involving different models of hepatocyte proliferation contributes to our knowledge about serotonergic regulation of cell growth, apoptosis and carcinogenesis of liver. The study reveals that the alteration of the 5-HT1A and 5-HT2C receptor function and gene expression in the brain stem, cerebral cortex and hypothalamus play an important role in the sympathetic regulation of cell proliferation, neoplastic transformation and apoptosis. The functional balance between 5-HT1A and 5-HT2C receptor plays an important role in regulating hepatocyte proliferation, neoplastic transformation and hepatic apoptosis. The regulatory role of 5-HT1A and 5-HT2C receptor during neoplastic transformation and apoptosis could lead to possible therapeutic intervention in the treatment of cancers and have immense clinical importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the role of central 5-HT2C receptor binding in rat model of pancreatic regeneration using 60-70% pancreatectomy. The 5-HT and 5-HT2c receptor kinetics were studied in cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H] mesulergine in cerebral cortex showed a significant decrease (p < 0.05) in maximal binding (B^,ax) without any change in Kd in 72 h pancreatectomised rats compared with sham. The decreased Bmax reversed to sham level by 7 days after pancreatectomy. In brain stem , Scatchard analysis showed a significant decrease (p < 0.01) in Bax with a significant increase (p < 0.01) in Kd. Competition analysis in brain stem showed a shift in affinity towards a low affinity. These parameters were reversed to sham level by 7 days after pancreatectomy. Thus the results suggest that 5-HT through the 5-HT2C receptor in the brain has a functional regulatory role in the pancreatic regeneration. (Mol Cell Biochem 272: 165-170, 2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was to investigate the rote of central 5-11T and 5-HT,:v receptor Lindin4o and acne expression in it 'at mo(lel of pancreatic regeneration using 60" -, pancreatcutumy. The pancreatic regeneration was evaluated by 5-HT content and 5-HT,,receptor gene expression in the cerebral cortex (CC) and brain stem MS) of Alain opcrate,t, 7 It utd 7 (.lays panereatectomised rats. 5-11T content significantly increased in the CC' (I' 1.1)11 and 13S (P 0.05) of 72 Ii p.ntcreateetomiscd rats. Sympathetic activity was decreased as indicated by the significantly decreased norcpiuephrine (NIi) and epinephrine (FTI) Icvcl (1' < 0.001 and P < 0.05) in the plasma of 72 h panereateetomised rats. 5-111 ,^, receptor density and affinity was decreased in the CC (P < 0.01) and BS (P < 0.01). These rh:)nge; correlated with a diminished 5-IITIA receptor mRNA expression in the brain region. studied. Our resuils suggest that the brain 5-11T through 5-HTin receptor has it funcuon:0 rule iii 11w pi+ncreatic regcner:ttion through the sympathetic regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, serotonin 2C (5-HT2c) receptor binding parameters in the brainstem and cerebral cortex were investigated during liver generation after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatic neoplasia in male Wistar rats. The serotonin content increased significantly (p<0.01) in the cerebral cortex after PH and in NDEA induced hepatic neoplasia. Brain stem serotonin content increased significantly (p<0.05) after PH and (p<0.001) in NDEA induced hepatic neoplasia. The number and affinity of the 5-HT2c receptors in the crude synaptic membrane preparations of the brain stem showed a significant (p<0.001) increase after PH and in NDEA induced hepatic neoplasia. The number and affinity of 5-HT2c receptors increased significantly (p<0.001) in NDEA induced hepatic neoplasia in the crude synaptic membrane preparations of the cerebral cortex. There was a significant (p<0.01) increase in plasma norepinephrine in PH and (p<0.001) in NDEA induced hepatic neoplasia, indicating sympathetic stimulation. Thus, our results suggest that during active hepatocyte proliferation 5-HT2c receptor in the brain stem and cerebral cortex are up-regulated which in turn induce hepatocyte proliferation mediated through sympathetic stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-HT2A receptor binding parameters were studied in the cerebral cortex and brain stem of control, diabetic, insulin, insulin + tryptophan and tr3yptophan treated streptozotocin diabetic rats. Scatchard analysis using selective antagonist, [-H](±)2,3-dimethoxyphenyl-l-[2-(4-piperidine)- methanol] ([3H]MDL100907) in cerebral cortex of diabetic rats showed a significant decrease in dissociation constant (Kd) without any change in maximal binding (Bm). Competition binding studies in cerebral cortex using ketanserin against [3H]MDL100907 showed the appearance of an additional site in the low affinity region during diabetes. In the brain stem, Scatchard analysis showed a significant increase in Bmax and Kd. Displacement studies showed a shift in the receptor affinity towards a low affinity state. All these altered parameters in diabetes were reversed to control level by insulin, insulin + tryptophan and tryptophan treatments. Tryptophan treatment is suggested to reverse the altered 5-HT2Abinding and blood glucose level to control status by increasing the brain 5-HT content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

nerv5o-HusT s ryescteempto. rTshaer oeb pjercetdiovme oinfa tnhtilsy s ltoucdaytewd ains ttoh ein bvreasitnig aanted tahree rionlveo olvf ehdy ipno tphaanlacrmeiact i5c- fHuTn,c t5i-oHn TaInAd acneldl p5r-HolTif2ercatrieocnepttohrr obuingdh isnygm apnadt hgeetniec pphtrqsHehepayaxuTevnepnpa cecIocnrhAirarettfyehilies pfceaasaai tdiolnetaoiae tcddnndmhc tr etab5aiueoncly-ggsamHr oermeHnndiaTasPeuituse2s rsLremdtca id oC tn[orri 3fegoa.5d H c n7t5-epseH.]2l- a mpHro nThtefeoTcv IsprrApeIueaAralga nesnaeterccninrdgrcrdeei e erntc aae5oeeettxg -pie.npHc ectTe rnotrTahoereersme2 rgas acseeiisthosnsxienaaoeprdmynrer a eicr wniestani pstalot iestrhsonov.aen r ted5u shloo-sm..yHifn nT pOe5RTgoh -u bINtH6iAhrys0AT a r%saluIe ta neussA mdxupidn plauya5tgnrnss - ei csHdssospr u sfT5teeg hia-s2cogHehticneef aT fisc.rmc it2teTr oacsc htmot gehr eppoteey oentc 5oh. rei -iarysTpdHsttpthee oTwonde[rt3I ,t ehp AgiH7rfaaeey2 ]lnnaa8 ce5nhmd-r O- doweaiHw caHn5atTnds-i sDc H I-ea7rAPrnT reodaA eg2atalguoyTncyelnz dan.sr eete5 ee5drrp-cdg a-HaebH itincpyTino Tc tr2nRore2cterThccaswee-r trpPe eahecctgCscyoet eRoeperpnmv tpo.feo autt5i rohlsen-ueraxHacdalpstaTtigsremor aeedcanynsuot asbs esnwli.y. o t er5e Ran5ex-nsgTH-pt Hudi-rTnPlwoeTa Csncatt sciohesRioo n oehnb ntna i ey7tgdn ne i huaundntel rs tywartii,nshn y ai5igngesss-

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epilepsy is a syndrome of episodic brain dysfunction characterized by recurrent unpredictable, spontaneous seizures. Cerebellar dysfunction is a recognized complication of temporal lobe epilepsy and it is associated with seizure generation, motor deficits and memory impairment. Serotonin is known to exert a modulatory action on cerebellar function through 5HT2C receptors. 5-HT2C receptors are novel targets for developing anticonvulsant drugs. In the present study, we investigated the changes in the 5-HT2C receptors binding and gene expression in the cerebellum of control, epileptic and Bacopa monnieri treated epileptic rats. There was a significant down regulation of the 5-HT content (pb0.001), 5-HT2C gene expression (pb0.001) and 5-HT2C receptor binding (pb0.001) with an increased affinity (pb0.001). Carbamazepine and B. monnieri treatments to epileptic rats reversed the down regulated 5-HT content (pb0.01), 5-HT2C receptor binding (pb0.001) and gene expression (pb0.01) to near control level. Also, the Rotarod test confirms the motor dysfunction and recovery by B. monnieri treatment. These data suggest the neuroprotective role of B. monnieri through the upregulation of 5-HT2C receptor in epileptic rats. This has clinical significance in the management of epilepsy

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progesterone-receptor complex from freshly prepared hen oviduct cytosol acquired the ability to bind to isolated nuclei, DNA-cellulose and ATP-Sepharose when incubated with 5-10 mM ATP at 4°C. The extent of this ATP-dependent activation was higher when compared with heat-activation achieved by warming the progesterone- receptor complex at 23 °C. The transformation of progesterone-receptor complex which occurred in a time-dependent manner was only partially dependent on hormone presence. The ATP effect was selective in causing this transformation whereas ADP, AMP and cAMP failed to show any such effect. The non-hydrolizable analogs of ATP, adenosine 5'-[a,/3-methylene]triphosphate and adenosine 5-[/l,y-imido]triphosphate were also found to be ineffective. Presence of 10 mM sodium molybdate blocked both the ATP and the heat-activation of progesterone-receptor complex. Mn" or Mg` had no detectable effect on the receptor activation but the presence of Ca" increased the extent of ATP-activation slightly. EDTA presence (> 5 mM) decreased the extent of receptor activation by about 40 % and was, therefore, not included in the buffers used for activation studies. Divalent cations were also ineffective when tested in the presence of 1- 5 mM EDTA. The properties of progesterone-receptor complex remained intact under the above conditions when analyzed for steroid-binding specificity and Scatchard analysis. However, the ATP-activated progesterone-receptor complex lost the ability to aggregate when tested on low-salt sucrose gradients. ATP was equally effective in activating the rat-uterine estradiol-receptor complex at 4 "C and influenced the transformation of 4-S receptor form into a 5-S form when analyzed on sucrose gradients containing 0.3 M KCI. The presence of ATP also increased the rate of activation of progesterone-receptor complex at 23 °C. These findings suggest a role for ATP in receptor function and offer a convenient method of studying the process of receptor activation at low temperature and mild assay conditions.