2 resultados para 4 methoxy n methylphenethylamine
em Cochin University of Science
Resumo:
Rare earth exchanged Na–Y zeolites, H-mordenite, K-10 montmorillonite clay and amorphous silica-alumina were effectively employed for the continuous synthesis of nitriles. Dehydration of benzaldoxime and 4-methoxybenzaldoxime were carried out on these catalysts at 473 K. Benzonitrile (dehydration product) was obtained in near quantitative yield with benzaldoxime whereas; 4-methoxybenzaldoxime produces both Beckmann rearrangement (4-methoxyphenylformamide) as well as dehydration products (4-methoxy benzonitrile) in quantitative yields. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream (TOS) studies show decline in the activity of the catalysts due to neutralization of acid sites by the basic reactant and product molecules and water formed during the dehydration of aldoximes.
Resumo:
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.