3 resultados para 3A
em Cochin University of Science
Resumo:
The aim of the study is to synthesise several dibenzoylakene-type systems such as acenaphthenone-2-ylidene ketones 47 and phenanthrenone-9-ylidene ketones 48 by the condensation reaction of acenaphthenequinone and phenanthrenequinone with methyl ketones. Here studies the thermal and photochemical transformations of acenaphthaenone-2-ylidene ketones 3a-c.These acenaphthenone –2-ylidene ketones underwent extensive decomposition on heating. The objectives of present study is to synthesise acenaphthenone-2-ylidene ketones by the Claisen-Schmidt condensation of acenaphthenequinone and methyl ketones, it is to synthesise phenanthrenone –9-ylidene ketones by the Claisen-Schmidt condensation of phenanthrequinone and methyl ketones, thermal studies on acenaphthenone-2-ylidene ketones and phenanthrenone-9-ylidene ketones, photochemical studies on acenaphthenone-2-ylidene ketones and phenanthrenone –9-ylidene ketones to establish the generality of dibenzoyalkene rearrangement. Cyclic voltammetric studies on these dibezoyalkenes to compare their redox behaviour with that of the cis and trans isomers of dibenzoyl-ethylene, dibenzoylstilbene. These results should provide some information about their reactivity, and to assess and exploit the potential of these systems as quinonemethides. This study conclude that a number of new dibenzolalkene-type systems have been synthesized by the Claisen-Schmidt condensation of 1,2-diketones such as phenanthequinone and acenaphthenequinone with methyl ketones. Some of these compounds have been shown to undergo interesting photochemical transformations. Based on the results it is conclude that phenanthjrenone-9-ylidene ketones are excellent Michael acceptors. Methanol adds to these to yield the corresponding furanols. These furanols are unstable and are slowly converted to phenanthro-2 (3H)-furanones.
Resumo:
The present work attempts to trace the variation in the physical and chemical behavior of ilmenite, since its release from country rocks and subsequent transportation to the coast through the progressive weathering environments of laterite, sedimentary rocks, rivers and estuarine systems. Since the hinterland of the study area consists of crystalline and sedimentary rocks and their weathered forms (laterites), the contribution of each lithological system to the beach placer is attempted. The results of the study show that the most magnetic fraction contains more content of altered phases than the relatively unweathered fractions. The fractions separated above 0.35A define a high grade of ilmenite ore enriched in Ti content. The lattice volume generally decreases with alteration. The magnetic studies revels that the Chavara ilmenite are found to be made up to low magnetic crops with about 46% of the bulk ilmenite constituted by fractions separated at above 0.35A. In the Manavalakurichi ilmenite on the other hand, around 91% of the beach ilmenite is made of fractions separated at or below 0.3A
Resumo:
The aim of the study is to synthesise several dibenzoylakene-type systems such as acenaphthenone-2-ylidene ketones 47 and phenanthrenone-9-ylidene ketones 48 by the condensation reaction of acenaphthenequinone and phenanthrenequinone with methyl ketones. Here studies the thermal and photochemical transformations of acenaphthaenone-2-ylidene ketones 3a-c.These acenaphthenone –2-ylidene ketones underwent extensive decomposition on heating. The objectives of present study is to synthesise acenaphthenone-2-ylidene ketones by the Claisen-Schmidt condensation of acenaphthenequinone and methyl ketones, it is to synthesise phenanthrenone –9-ylidene ketones by the Claisen-Schmidt condensation of phenanthrequinone and methyl ketones, thermal studies on acenaphthenone-2-ylidene ketones and phenanthrenone-9-ylidene ketones, photochemical studies on acenaphthenone-2-ylidene ketones and phenanthrenone –9-ylidene ketones to establish the generality of dibenzoyalkene rearrangement. Cyclic voltammetric studies on these dibezoyalkenes to compare their redox behaviour with that of the cis and trans isomers of dibenzoyl-ethylene, dibenzoylstilbene. These results should provide some information about their reactivity, and to assess and exploit the potential of these systems as quinonemethides. This study conclude that a number of new dibenzolalkene-type systems have been synthesized by the Claisen-Schmidt condensation of 1,2-diketones such as phenanthequinone and acenaphthenequinone with methyl ketones. Some of these compounds have been shown to undergo interesting photochemical transformations. Based on the results it is conclude that phenanthjrenone-9-ylidene ketones are excellent Michael acceptors. Methanol adds to these to yield the corresponding furanols. These furanols are unstable and are slowly converted to phenanthro-2 (3H)-furanones