3 resultados para 3-valued model logic
em Cochin University of Science
Resumo:
Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
The mechanism of devulcanization of sulfur-vulcanized natural rubber with aromatic disulfides and aliphatic amines has been studied using 23-dimethyl-2-butene (C5H1,) as a low-molecular weight model compound. First C6H12 was vulcanized with a mixture of sulfur, zinc stearate and N-cyclohexyl-2-benzothiazylsulfenamide (CBS) as accelerator at 140 °C, resulting in a mixture of addition products (C(,H 1 i-S,-C5H 1 i ). The compounds were isolated and identified by High Performance Liquid Chromatography (HPLC) with respect to their various sulfur ranks. In it second stage, the vulcanized products were devulcanized using the agents mentioned above at 200 °C. The kinetics and chemistry of the breakdown of the sulfur-hridges were monitored. Both devulcanization agents decompose sulfidic vulcanization products with sulfur ranks equal or higher than 3 quite effectively and with comparable speed. Di phenyldisulfide as devulcanization agent gives rise to a high amount of mono- and disulfidic compounds formed during the devulcanization, hexadecylamine, as devulcanization agent, prevents these lower sulfur ranks from being formed.