5 resultados para 3 Models
em Cochin University of Science
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
This thesis deals with the use of simulation as a problem-solving tool to solve a few logistic system related problems. More specifically it relates to studies on transport terminals. Transport terminals are key elements in the supply chains of industrial systems. One of the problems related to use of simulation is that of the multiplicity of models needed to study different problems. There is a need for development of methodologies related to conceptual modelling which will help reduce the number of models needed. Three different logistic terminal systems Viz. a railway yard, container terminal of apart and airport terminal were selected as cases for this study. The standard methodology for simulation development consisting of system study and data collection, conceptual model design, detailed model design and development, model verification and validation, experimentation, and analysis of results, reporting of finding were carried out. We found that models could be classified into tightly pre-scheduled, moderately pre-scheduled and unscheduled systems. Three types simulation models( called TYPE 1, TYPE 2 and TYPE 3) of various terminal operations were developed in the simulation package Extend. All models were of the type discrete-event simulation. Simulation models were successfully used to help solve strategic, tactical and operational problems related to three important logistic terminals as set in our objectives. From the point of contribution to conceptual modelling we have demonstrated that clubbing problems into operational, tactical and strategic and matching them with tightly pre-scheduled, moderately pre-scheduled and unscheduled systems is a good workable approach which reduces the number of models needed to study different terminal related problems.
Resumo:
The thesis entitled “Queueing Models with Vacations and Working Vacations" consists of seven chapters including the introductory chapter. In chapters 2 to 7 we analyze different queueing models highlighting the role played by vacations and working vacations. The duration of vacation is exponentially distributed in all these models and multiple vacation policy is followed.In chapter 2 we discuss an M/M/2 queueing system with heterogeneous servers, one of which is always available while the other goes on vacation in the absence of customers waiting for service. Conditional stochastic decomposition of queue length is derived. An illustrative example is provided to study the effect of the input parameters on the system performance measures. Chapter 3 considers a similar setup as chapter 2. The model is analyzed in essentially the same way as in chapter 2 and a numerical example is provided to bring out the qualitative nature of the model. The MAP is a tractable class of point process which is in general nonrenewal. In spite of its versatility it is highly tractable as well. Phase type distributions are ideally suited for applying matrix analytic methods. In all the remaining chapters we assume the arrival process to be MAP and service process to be phase type. In chapter 4 we consider a MAP/PH/1 queue with working vacations. At a departure epoch, the server finding the system empty, takes a vacation. A customer arriving during a vacation will be served but at a lower rate.Chapter 5 discusses a MAP/PH/1 retrial queueing system with working vacations.In chapter 6 the setup of the model is similar to that of chapter 5. The signicant dierence in this model is that there is a nite buer for arrivals.Chapter 7 considers an MMAP(2)/PH/1 queueing model with a nite retrial group
Resumo:
The objective of the study of \Queueing models with vacations and working vacations" was two fold; to minimize the server idle time and improve the e ciency of the service system. Keeping this in mind we considered queueing models in di erent set up in this thesis. Chapter 1 introduced the concepts and techniques used in the thesis and also provided a summary of the work done. In chapter 2 we considered an M=M=2 queueing model, where one of the two heterogeneous servers takes multiple vacations. We studied the performance of the system with the help of busy period analysis and computation of mean waiting time of a customer in the stationary regime. Conditional stochastic decomposition of queue length was derived. To improve the e ciency of this system we came up with a modi ed model in chapter 3. In this model the vacationing server attends the customers, during vacation at a slower service rate. Chapter 4 analyzed a working vacation queueing model in a more general set up. The introduction of N policy makes this MAP=PH=1 model di erent from all working vacation models available in the literature. A detailed analysis of performance of the model was provided with the help of computation of measures such as mean waiting time of a customer who gets service in normal mode and vacation mode.
Resumo:
In this paper the class of continuous bivariate distributions that has form-invariant weighted distribution with weight function w(x1, x2) ¼ xa1 1 xa2 2 is identified. It is shown that the class includes some well known bivariate models. Bayesian inference on the parameters of the class is considered and it is shown that there exist natural conjugate priors for the parameters