20 resultados para 230112 Topology and Manifolds
em Cochin University of Science
Resumo:
Department of Mathematics, Cochin University of Science and Technology.
Resumo:
This thesis Entitled On Infinite graphs and related matrices.ln the last two decades (iraph theory has captured wide attraction as a Mathematical model for any system involving a binary relation. The theory is intimately related to many other branches of Mathematics including Matrix Theory Group theory. Probability. Topology and Combinatorics . and has applications in many other disciplines..Any sort of study on infinite graphs naturally involves an attempt to extend the well known results on the much familiar finite graphs. A graph is completely determined by either its adjacencies or its incidences. A matrix can convey this information completely. This makes a proper labelling of the vertices. edges and any other elements considered, an inevitable process. Many types of labelling of finite graphs as Cordial labelling, Egyptian labelling, Arithmetic labeling and Magical labelling are available in the literature. The number of matrices associated with a finite graph are too many For a study ofthis type to be exhaustive. A large number of theorems have been established by various authors for finite matrices. The extension of these results to infinite matrices associated with infinite graphs is neither obvious nor always possible due to convergence problems. In this thesis our attempt is to obtain theorems of a similar nature on infinite graphs and infinite matrices. We consider the three most commonly used matrices or operators, namely, the adjacency matrix
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
In this thesis an attempt is made to study vortex knots based on the work of Keener . It is seen that certain mistakes have been crept in to the details of this paper. We have chosen this study for an investigation as it is the first attempt to study vortex knots. Other works had given attention to this. In chapter 2 we have considered these corrections in detail. In chapter 3 we have tried a simple extension by introducing vorticity in the evolution of vortex knots. In chapter 4 we have introduced a stress tensor related to vorticity. Chapter 5 is the general conclusion.Knot theory is a branch of topology and has been developed as an independent branch of study. It has wide applications and vortex knot is one of them. As pointed out earlier, most of the studies in fluid dynamics exploits the analogy between vorticity and magnetic induction in the case of MHD. But vorticity is more general than magnetic induction and so it is essential to discuss the special properties of vortex knots, independent of MHD flows. This is what is being done in this thesis.
Resumo:
Mobile Ad-hoc Networks (MANETS) consists of a collection of mobile nodes without having a central coordination. In MANET, node mobility and dynamic topology play an important role in the performance. MANET provide a solution for network connection at anywhere and at any time. The major features of MANET are quick set up, self organization and self maintenance. Routing is a major challenge in MANET due to it’s dynamic topology and high mobility. Several routing algorithms have been developed for routing. This paper studies the AODV protocol and how AODV is performed under multiple connections in the network. Several issues have been identified. The bandwidth is recognized as the prominent factor reducing the performance of the network. This paper gives an improvement of normal AODV for simultaneous multiple connections under the consideration of bandwidth of node.
Resumo:
In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention
Resumo:
It is believed that every fuzzy generalization should be formulated in such a way that it contain the ordinary set theoretic notion as a special case. Therefore the definition of fuzzy topology in the line of C.L.CHANG E9] with an arbitrary complete and distributive lattice as the membership set is taken. Almost all the results proved and presented in this thesis can, in a sense, be called generalizations of corresponding results in ordinary set theory and set topology. However the tools and the methods have to be in many of the cases, new. Here an attempt is made to solve the problem of complementation in the lattice of fuzzy topologies on a set. It is proved that in general, the lattice of fuzzy topologies is not complemented. Complements of some fuzzy topologies are found out. It is observed that (L,X) is not uniquely complemented. However, a complete analysis of the problem of complementation in the lattice of fuzzy topologies is yet to be found out
Resumo:
This thesis is a study of abstract fuzzy convexity spaces and fuzzy topology fuzzy convexity spaces No attempt seems to have been made to develop a fuzzy convexity theoryin abstract situations. The purpose of this thesis is to introduce fuzzy convexity theory in abstract situations
Resumo:
The study on the fuzzy absolutes and related topics. The different kinds of extensions especially compactification formed a major area of study in topology. Perfect continuous mappings always preserve certain topological properties. The concept of Fuzzy sets introduced by the American Cyberneticist L. A Zadeh started a revolution in every branch of knowledge and in particular in every branch of mathematics. Fuzziness is a kind of uncertainty and uncertainty of a symbol lies in the lack of well-defined boundaries of the set of objects to which this symbol belongs. Introduce an s-continuous mapping from a topological space to a fuzzy topological space and prove that the image of an H-closed space under an s-continuous mapping is f-H closed. Here also proved that the arbitrary product fi and sum of fi of the s-continuous maps fi are also s-continuous. The original motivation behind the study of absolutes was the problem of characterizing the projective objects in the category of compact spaces and continuous functions.
Resumo:
The topology as the product set with a base chosen as all products of open sets in the individual spaces. This topology is known as box topology. The main objective of this study is to extend the concept of box products to fuzzy box products and to obtain some results regarding them. Owing to the fact that box products have plenty of applications in uniform and covering properties, here made an attempt to explore some inter relations of fuzzy uniform properties and fuzzy covering properties in fuzzy box products. Even though the main focus is on fuzzy box products, some brief sketches regarding hereditarily fuzzy normal spaces and fuzzy nabla product is also provided. The main results obtained include characterization of fuzzy Hausdroffness and fuzzy regularity of box products of fuzzy topological spaces. The investigation of the completeness of fuzzy uniformities in fuzzy box products proved that a fuzzy box product of spaces is fuzzy topologically complete if each co-ordinate space is fuzzy topologically complete. The thesis also prove that the fuzzy box product of a family of fuzzy α-paracompact spaces is fuzzy topologically complete. In Fuzzy box product of hereditarily fuzzy normal spaces, the main result obtained is that if a fuzzy box product of spaces is hereditarily fuzzy normal ,then every countable subset of it is fuzzy closed. It also deals with the notion of fuzzy nabla product of spaces which is a quotient of fuzzy box product. Here the study deals the relation connecting fuzzy box product and fuzzy nabla product