3 resultados para 2-mercaptoimidazole silica gel for Hg-II separation
em Cochin University of Science
Resumo:
The quantum yields of singlet oxygen production and lifetimes at the gas–solid interface in silica gel material are determined. Different photosensitizers (PS) are encapsulated in parallelepipedic xerogel monoliths (PS-SG). PS were chosen according to their known photooxidation properties: 9,10-dicyanoanthracene (DCA), 9,10-anthraquinone (ANT), and a benzophenone derivative, 4-benzoyl benzoic acid (4BB). These experiments are mainly based on time-resolved 1O2 phosphorescence detection, and the obtained FD and tD values are compared with those of a reference sensitizer for production, 1H-phenalen-1- one (PN), included in the same xerogel. The trend between their ability to oxidize organic pollutants in the gas phase and their efficiency for production is investigated through photooxidation experiments of a test pollutant dimethylsulfide (DMS). The FD value is high for DCA-SG relative to the PN reference, whereas it is slightly lower for 4BB-SG and for ANT-SG. FD is related to the production of sulfoxide and sulfone as the main oxidation products for DMS photosensitized oxidation. Additional mechanisms, leading to C!S bond cleaveage, appear to mainly occur for the less efficient singlet oxygen sensitizers 4BB-SG and ANTSG.
Resumo:
Five Mn(II) complexes of bis(thiosemicarbazones) which are represented as [Mn(H2Ac4Ph)Cl2] (1), [Mn(Ac4Ph)H2O] (2), [Mn(H2Ac4Cy)Cl2]·H2O (3), [Mn(H2Ac4Et)Cl2]·3H2O (4) and [Mn(H2Ac4Et)(OAc)2]·3H2O (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes except [Mn(Ac4Ph)H2O], the ligands act as pentadentate neutral molecules and coordinate to Mn(II) ion through two thione sulfur atoms, two azomethine nitrogens and the pyridine nitrogen, suggesting a heptacoordination. While in compound [Mn(Ac4Ph)H2O], the dianionic ligand is coordinated to the metal suggesting six coordination in this case. Magnetic studies indicate the high spin state of Mn(II). Conductivity measurements reveal their non-electrolyte nature. EPR studies indicate five g values for [Mn(Ac4Ph)H2O] showing zero field splitting.
Resumo:
Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies