2 resultados para 1995_12081049 CTD-51 5401104

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is about the Pseudomonas sp. BTMS-51 isolated from the marine sediments of Cochin Coast. In the present study, it is concluded that marine bacteria are ideal candidates for immobilization using either Ca-alginate entrapment or physical adsorption on to synthetic inert supports and the process of immobilization does not negatively influence them. Thus, Ca-alginate entrapment of the bacteria was found to be well suited for reuse of the biomass and extended operational stability during continuous operation. Adherence of the bacterium to inertsupports was observed to be strong and it imparted minimal stress on the immobilized bacterium and allowed detachment and relocation on the supports which enabled the formation of a dynamic equilibrium maintaining a stable cell loading. This is particularly desirable in the industry for extended operational stability and maintenance of consistently higher outputs. Marine Pseudomonas sp. BTMS-51 is ideal for industrial production of extra cellular L-glutaminase and immobilization on to synthetic inert support such as polyurethane foam could be an efficient technique, employing packed bed reactor for continuous production of the enzyme. Temperature and glutamine concentration had significant effects on enzyme production by cells immobilized on polyurethane foam (PUF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A marine Pseudomonas sp BTMS-51, immobilized by Ca-alginate gel entrapment was used for the production of extracellular Lglutaminase under repeated batch process and continuous process employing a packed bed reactor (PBR). Immobilized cells could produce an average of 25 U/ml of enzyme over 20 cycles of repeated batch operation and did not show any decline in production upon reuse. The enzyme yield correlated well with the biomass content in the beads. Continuous production of the enzyme in PBR was studied at different substrate concentrations and dilution rates. In general, the volumetric productivity increased with increased dilution rate and substrate concentrations and the substrate conversion efficiency declined. The PBR operated under conditions giving maximal substrate conversion efficiency gave an average yield of 21.07 U/ml and an average productivity of 13.49 U/ml/h. The system could be operated for 120 h without any decline in productivity