3 resultados para 1985-1995

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spike disease in sandal is generally diagnosed by the manifestation of external symptoms. Attempts have been made to detect the diseased plants by determining the length/breadth ratio of leaves (lyengar, 1961) and histochemical tests using Mann's stain (Parthasarathi et al., 1966), Dienes' stain (Ananthapadmanabha et a/., 1973) aniline blue and Hoechst 33258 (Ghosh et a/., 1985, Rangaswamy, 1995). But most of these techniques are insensitive, indirect detection methods leading to misinterpretation of results. Moreover, to identify disease resistant sandal trees, highly sensitive techniques are needed to detect the presence of the pathogen. In sandal forests, several host plants of sandal like Zizyphus oenop/ea (Fig. 1.3) also exhibit the yellows type disease symptoms. Immunological and molecular assays have to be developed to confirm the presence of sandal spike phytoplasma in such hosts. The major objectives of the present work includes:In situ detection of sandal spike phytoplasma by epifluorescence microscopy and scanning electron microscopy.,Purification of sandal spike phytoplasma and production of polyclonal antibodies.,Amino acid and total protein estimation of sandal spike phytoplasma.,Immunological detection of sandal spike phytoplasma., Molecular detection of sandal spike phytoplasma.,Screening for phytoplasma in host plants of spike disease affected sandal using immunological and molecular techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of natural sandal populations due to illicit felling, forest encroachment and spike disease have an adverse effect on genetic diversity of the species. To initiate any genetic improvement programme in sandal, a precise understanding of the population genetic diversity structure is essential. The concern over the loss of genetic variability in sandal is particularly critical, as there is hardly any information regarding the diversity status of the natural populations. Identifying fast growing, disease resistant, oil rich sandal trees through breeding and their mass multiplication for afforestation are the best method for ensuring sustainable supply of superior sandalwood. The healthy sandal trees existing in heavily spike diseased area can be used as a promising starting point for any such breeding programme (Venkatesh, 1978). So far, no genetic information is available regarding the resistant nature of spike disease evaded trees left in heavily infected patches. The high rate of depletion of the superior trees in South Indian sandal reserves due to illegal felling and spike disease has necessitated an urgent need for conservation of the surviving trees.Widespread occurrence of spike disease in Marayoor forest reserve was reported in 1981 (Ghosh and Balasundaran, 1995). Because of the high density of trees and varying intensity of spike disease, Marayoor sandal population was found to be ideal for experimental studies in sandal (Ghosh et al., 1985). Fifteen trees of reserve 51 of Marayoor range had been selected as candidate plus trees for growth and spike disease evasion . These trees have been selected for mass multiplication through tissue culture technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is the first attempt to understand population characteristics of the deep-sea pandalid shrimp, P. quasigrandis and to assess the status of these resources off Kerala coast.Total mortality coefficient (Z) of P. quasigrandis estimated by various methods.Natural mortality coefficient (M) calculated was 0.65 and 1.02 by Pauly‟sempirical formula and Srinaths‟s formula respectively The deep-sea shrimp P. quasigrandis exploited from the present fishing ground and their monetary return has started showing a declining trend. By observing the current yield and economic return, there is no further scope for increasing the catch from the present fishing ground. The study indicated that majority of the deep-sea shrimp trawlers, especially targeted for pandalid shrimps still concentrated off Kollam area (Quilon Bank). Even though researchers had located several potential deep-sea fishing grounds based on exploratory surveys in Indian EEZ , fishermen are unaware of these fishing grounds located and hence sharing the information about new potential deep-sea fishing grounds could avert the possible stock decline due to the intensive targeted deep-sea shrimp fishery in the Quilon Bank. Hence, the present study recommended that part of the effort from existing fishing grounds may be shifted to newly located deep-sea fishing grounds which will help in a sustainableexploitation of deep-sea resources off Kerala coast.