37 resultados para (a) Partly escaped from laser sooting
em Cochin University of Science
Resumo:
Time and space resolved spectroscopic studies of the molecular band emission from C2 are performed in the plasma produced by irradiating a graphite target with 1:06 m radiation from a Q-switched Nd:YAG laser. High-resolution spectra are recorded from points located at distances up to 15 mm from the target in the presence of ambient helium gas pressure. Depending on the laser irradiance, time of observation and position of the sampled volume of the plasma the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels of C2 molecules have been evaluated as a function of distance for different time delays and laser irradiance. It is also found that the vibrational temperature of C2 molecules decreases with increasing helium pressure.
Resumo:
The emission features of laser ablated graphite plume generated in a helium ambient atmosphere have been investigated with time and space resolved plasma diagnostic technique. Time resolved optical emission spectroscopy is employed to reveal the velocity distribution of different species ejected during ablation. At lower values of laser fluences only a slowly propagating component of C2 is seen. At high fluences emission from C2 shows a twin peak distribution in time. The formation of an emission peak with diminished time delay giving an energetic peak at higher laser fluences is attributed to many body recombination. It is also observed that these double peaks get modified into triple peak time of flight distribution at distances greater than 16 mm from the target. The occurrence of multiple peaks in the C2 emission is mainly due to the delays caused from the different formation mechanism of C2 species. The velocity distribution of the faster peak exhibits an oscillating character with distance from the target surface.
Resumo:
We report time resolved study of C2 emission from laser produced carbon plasma in presence of ambient helium gas. The 1.06µm: radiation from a Nd:YAG laser was focused onto a graphite target where it·produced a transient plasma. We observed double peak structure in the time profile of C2 species. The twin peaks were observed only after a threshold laser fluence. It is proposed that the faster velocity component in the temporal profiles originates mainly due to recombination processes. The laser fluence and ambient gas dependence of the double peak intensity distribution is also reported.
Resumo:
Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.
Resumo:
This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Resumo:
Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity