144 resultados para microstructured optical fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central theme of the work presented in this thesis is a careful investigation of the factors influencing the attenuation of laser beam through sea water. The thesis presents a detailed report of the work done by the author on the attenuation studies in sea water and on laser propagation through a turbulent medium. The thesis contains six chapters which are more or less self-contained with separate abstracts and references. The first chapter is divided into two parts. The first part introduces the subject of laser propagation through sea water. It includes a brief description of optical properties of sea water followed by a review of the earlier works on attenuation studies in water. The second part gives the theoretical background of the problem of laser propagation through a turbulent medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optics has emerged as a new area of physics , following the development of various types of lasers. A number of advancements , both theoretical and experimental . have been made in the past two decades . by scientists al1 over the world. However , onl y few scientists have attempted to study the experimental aspects of nonlinear optical phenomena i n I ndian laboratories. This thesis is the report of an attempt made in this direction. The thesis contains the details of the several investigations which the author has carried out in the past few years, on optical phase conjugation (OPC) and continuous wave CCVD second harmonic generation CSHG). OPC is a new branch of nonlinear optics, developed only in the past decade. The author has done a few experiments on low power OPC in dye molecules held in solid matrices, by making use of a degenerate four wave mixing CDFWND scheme. These samples have been characterised by studies on their absorption-spectra. fluorescence spectra. triplet lifetimes and saturation intensities. Phase conjugation efficiencies with r espect to the various parameters have been i nvesti gated . DFWM scheme was also employed i n achievi ng phase conjugation of a br oadband laser C Nd: G1ass 3 using a dye solution as the nonlinear medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic crystals possess extremely large optical nonlinearity compared to inorganic crystals. Also organic compounds have the amenability for synthesis and scope for introducing desirable characteristics by inclusions. A wide variety of organic materials having electron donor and acceptor groups, generate high order of nonlinearity. In the present work, a new nonlinear optical crystal, L-citrulline oxalate (LCO) based on the aminoacid L-citrulline was grown using slow evaporation technique. Structural characterization was carried out by single crystal XRD. It crystallizes in the noncentrosymmetric, orthorhombic structure with space group P21 P21 P21. Functional groups present in the sample were identified by Fourier transform infra red (FTIR) and FT-Raman spectral analysis. On studying the FTIR and Raman spectra of the precursors L-citrulline and oxalic acid, used for growing L-citrulline oxalate crystal, it is found that the significant peaks of the precursors are present in the spectra of the L-citrulline oxalate crystal . This observation along with the presence of NH3 + group in the spectra of L-citrulline oxalate, confirms the formation of the charge transfer complex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis aims to present the results of experimental investigations on the changes of optical properties of metallic thin films due to heating. The parameters which are measured are reflectivity, refractive indices and the ellipsometric quantities V and A . The materials used in the studies are metals like Silver, Aluminium and Copper. By applying the optical method the interdiffusion taking place in multilayer ‘films of Aluminium and Silver has also been studied. Special interest has been taken to reveal the mechanisms of the hillock growth and surface roughness caused by heating and their relation with the stress in the film

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of chiral polyurethanes containing amido linkages in the polymer backbone have been synthesized by reacting toluene diisocyanate with isosorbide (IS) chiral moiety and the chromophores [N,N0-ethane- 1,2-diyl bis(6-hydroxy hexanamide), N,N0-butane-1,4-diyl bis(6-hydroxy hexanamide) and N,N0-hexane-1,6-diyl bis (6-hydroxy hexanamide)]. The corresponding chromophores were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane and diaminohexane, respectively. All the polymers were synthesized according to the symmetry conditions so as to obtain the non-centrosymmetric environment. A series of polyurethanes were synthesized by varying the chiral– chromophore composition. The polyurethanes developed were characterized by optical and thermal methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an optical limiter based on ferrofluids which has a very high shelf life and remarkable thermal stability, which are important requirements for sustainable use with intense lasers. The colloidal suspensions contain nanosized particles of approximately 80 Å diameter, with a number density of the order of 1022 /m3. The nonlinear optical transmission of the samples is studied using nanosecond and femtosecond laser pulses. Excited state absorption phenomena contribute to enhanced limiting in the nanosecond excitation regime. An advantageous feature of ferrofluids in terms of device applications is that their optical properties are controllable by an external magnetic field.