126 resultados para Natural rubber latex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Waste latex products are converted to a processabto material by a novel economical process developed in our laboratory , It contains rubber hydrocarbon of very high quality and Is lightly cross -linked. Styrene-butadlene rubber is mixed with latex reclaim In different proportions . The mechanical properties are found to be improved up to 60 percent replacement of styrene-butadlene rubber by latex reclaim . The curing of styrene-butadiene rubber Is found to be accelerated by the addition of latex reclaim. The processablllty study shows that the blends can be processed similar to SBRINR blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread etc. Because of the strict specifications for the products and the unstable nature of the latex, as high as 15%, of the final latex products are rejected. Since waste latex rubber (WLR) represents a source of high quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. Two types of WLR with different amounts of polysulfidic bridges are used in these experiments, which are reclaimed with variation of the concentration of the reclaiming agents, the reclamation temperature and time, Di phenyldisultide, 2-aminophenyldisulfide and 2,2'-dibenzamidodiphenyldisulfide (DBADPDS) are used as reclaiming agents, and the effect of diphenyldisulfides (DPDS) with different substituents, on the reclamation efficiency of WLR is investigated. A kinetic study of the reclamation reaction with the three reclaiming agents is done. The reaction rates and activation energies are calculated and compared with literature values. The comparative study of the three different reclaiming agents shows that (DBADPDS) is able to break the crosslinks at temperature levels 20'C below the temperature levels normally used with DPDS. Another advantage of this reclaiming agent is the reduced smell during the reclamation process and of the final reclaims, one of the most important shortcomings of other disulfides used for this purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study the preparation and characterisation of rubber ferrite composites (RFC) containing barium ferrite (BaF) and strontium ferrite (SrF) have been dealt with. The incorporation of the hard ferrites into natural and nitrile rubber was carried out according to a specific recipe for various loadings of magnetic fillers. For this, the ferrite materials namely barium ferrite and strontium ferrite having the general formula MO6Fe2O3 have been prepared by the conventional ceramic techniques. After characterisation they were incorporated into the natural and nitrile rubber matrix by mechanical method. Carbon black was also incorporated at different loading into the rubber ferrite composites to study its effect on various properties. The cure characteristics, mechanical, dielectric and magnetic properties of these composites were evaluated. The ac electrical conductivity of both the ceramic ferrites and rubber ferrite composites were also calculated using a simple relation. The investigations revealed that the rubber ferrite composites with the required dielectric and magnetic properties can be obtained by the incorporation of ferrite fillers into the rubber matrix, without compromising much on the processability and mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary aim of this work has been to develop a cost effective process that can be operated at room temperature for developing latex reclaim with superior mechanical properties. With this objective in mind the researcher proposes to study the reclaiming action of four different chemicals on latex products waste. Waste latex products are chosen because it has a higher potential to generate good quality rubber hydrocarbon since all latex products are based on either high quality concentrated latex or creamed latex. Moreover, all latex products are only lightly crosslinked and not masticated and hence not mechanically degraded. The author also proposes to fully explore the possible application of latex reclaim in various fields..