111 resultados para Spectral and nonlinear optical characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and development of an evanescent wave sensor to determine the etching rate of the core of an optical fibre is discussed in this paper. The working of the device is based on the principle of propagation and loss of the evanescent wave in the cladding region of the fibre. The fraction of light intensity creeping out of the core of an uncladded fibre is a function of the core radius. As this radius decreases, the evanescent wave coupling to the medium surrounding the core enhances. This results in a decrease of the transmitted light intensity through the fibre. This technique is useful to design and fabricate optical fibres with different core geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor physics has developed significantly in the field of re- search and industry in the past few decades due to it’s numerous practical applications. One of the relevant fields of current interest in material science is the fundamental aspects and applications of semi- conducting transparent thin films. Transparent conductors show the properties of transparency and conductivity simultaneously. As far as the band structure is concerned, the combination of the these two properties in the same material is contradictory. Generally a trans- parent material is an insulator having completely filled valence and empty conduction bands. Metallic conductivity come out when the Fermi level lies within a band with a large density of states to provide high carrier concentration. Effective transparent conductors must nec- essarily represent a compromise between a better transmission within the visible spectral range and a controlled but useful electrical con- ductivity [1–6]. Generally oxides like In2O3, SnO2, ZnO, CdO etc, show such a combination. These materials without any doping are insulators with optical band gap of about 3 eV. To become a trans- parent conductor, these materials must be degenerately doped to lift the Fermi level up into the conduction band. Degenerate doping pro- vides high mobility of extra carriers and low optical absorption. The increase in conductivity involves an increase in either carrier concen- tration or mobility. Increase in carrier concentration will enhance the absorption in the visible region while increase in mobility has no re- verse effect on optical properties. Therefore the focus of research for new transparent conducting oxide (TCO) materials is on developing materials with higher carrier mobilities.