117 resultados para Metal wastes
Resumo:
At this era of energy crisis and resource depletion, availability of conventional materials throughout the year in quantity and quality, pose a hectic problem for the builders. Adding fuel to the fire, the demand of these materials increases day by day, since the housing and habitat requirements exponentially increase time to time. There is an international concern over this crisis and researchers are reorienting themselves, so as to evolve appropriate masonry units, using locally available cheap materials and technology. The concept of green material and construction has been well conceived in the research so that marginal materials and unskilled labour can be employed for the mass production of building blocks. In this context, considering earth as a sustainable material, there is a growing interest in the use of it, as a modern construction material. Solid waste management is one of the current major environmental concerns in our country. Our country is left with millions of cubic metre of waste plastics. One of the methods to satisfactorily address this solid waste management and the environmental issues is to suitably accommodate the waste in some form (as fibres). Their employability in block making in the form of fibres (plastic fibre- mud blocks) can be investigated through a fundamental research. Also, the review of the existing literature shows that most studies on natural fibres are focussed on cellulose based/ vegetable fibres obtained from renewable plant resources except in very few cases, where animal fibre, plastic fibre and polystyrene fabric were used. At this context, for the plastic fibre-mud blocks to be more widely applicable, a systematic quantification of the relevant physical and mechanical properties of the fibre masonry units is crucial, to enable an objective evaluation of the composite material’s response to actual field condition. This research highlights the salient observations from the detailed investigation of a systematic study on the effect of embedded fibres, made of plastic wastes on the performance of stabilised mud blocks.
Resumo:
Eight new transition metal complexes of benzaldehyde-N(4)–phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL)2(OAc)2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL)2(OAc)2] in DMF solution at 77K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL)2SO4] complex in frozen DMF, indicate the presence of unpaired electron in the dx2−y2 orbital. The metal ligand bonding parameters evaluated showed strong in-plane bonding and in-plane bonding. The ligand and complexes were screened for their possible antimicrobial activities.
Resumo:
The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
Transition metal acetylides, MC2 (M=Fe, Co and Ni), exhibit ferromagnetic behavior of which TC is characteristic of their size and structure. CoC2 synthesized in anhydrous condition exhibited cubic structure with disordered C2− 2 orientation. Once being exposed to water (or air), the particles behave ferromagnetically due to the lengthening of the Co–Co distance by the coordination of water molecules to Co2+ cations. Heating of these particles induces segregation of metallic cores with carbon mantles. Electron beam or 193 nm laser beam can produce nanoparticles with metallic cores covered with carbon mantles
Resumo:
The Raman and FTIR spectra of [C(NH2)3]2M(SO4)2 ·6H2O (withM= Co, Fe, Ni) were recorded and analysed. The observed spectral bands are assigned in terms of vibrations of guanidinium ions, sulphate groups and water molecules. The analysis shows that the sulphate tetrahedra are distorted from their free state symmetry Td to C1. This is attributed to the presence of hydrogen bonds from water molecules. The order of distortion of the metal oxygen octahedra influenced the distortion of the sulphate tetrahedra. The appearance of 1– 3 modes of water molecules above 3300 cm−1 indicates the presence of weak hydrogen bonds
Resumo:
The distribution and accumulation of trace metals in the sediments of the Cochin estuary during the pre-monsoon, monsoon and post-monsoon periods were investigated. Sediment samples from 14 locations were collected and analysed for the metal contents (Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb), organic carbon, total nitrogen, total sulphur and grain size. The data were processed using statistical tools like correlation, factor and cluster analysis. The study revealed an enrichment of Cd and Zn in the study area particularly at station 2, which is confirmed by enrichment factor, contamination factor and geoaccumulation index. The factor analysis revealed that the source of Cd and Zn may be same. The study indicated that the spatial variation for the metals like Mg, Cr, Fe, Co, Ni, Cu, Zn, Cd and Pb were predominant unlike Mn which shows a temporal variation. The strong association of trace metals with Fe and Mn hydroxides and oxides are prominent along the Cochin estuary. The anthropogenic inputs of industrial effluents mainly control the trace metals enrichment in the Cochin estuary
Resumo:
This article present the result from a study of two sediment cores collected from the environmentally distinct zones of CES. Accumulation status of five toxic metals: Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu) and Lead (Pb) were analyzed. Besides texture and CHNS were determined to understand the composition of the sediment. Enrichment Factor (EF) and Anthropogenic Factor (AF) were used to differentiate the typical metal sources. Metal enrichment in the cores revealed heavy load at the northern (NS1 ) region compared with the southern zone (SS1). Elevation of metal content in core NS1 showed the industrial input. Statistical analyses were employed to understand the origin of metals in the sediment samples. Principal Component Analysis (PCA) distinguishes the two zones with different metal accumulation capacity: highest at NS1 and lowest at SS1. Correlation analysis revealed positive significant relation only in core NS1, adhering to the exposition of the intensified industrial pollution
Resumo:
This study gave the first report on the biennial metal divergence in the sediments of Cochin Estuarine system (CES). Surface sediments from 6 prominent regions of CES were sampled in 2009 and 2011 for the geochemical and environmental assessment of trace metals (Cd, Co, Cr, Cu, Pb Fe, Mg, Mn, Ni and Zn).Besides texture, total organic carbon (TOC) and CHNS were also done. The contamination and risk assessment were performed by determining geochemical indices. Comparison with sediment quality guidelines were done to assess the probability for ecotoxicological threat to the estuary. Results showed that the measured heavy metals had varied spatial distribution patterns, indicating that they had complex origins and controlling factors
Resumo:
The Cochin estuary (CE), which is one of the largest wetland ecosystems, extends from Thanneermukkam bund in the south to Azhikode in the north. It functions as an effluent repository for more than 240 industries, the characteristics of which includes fertilizer, pesticide, radioactive mineral processing, chemical and allied industries, petroleum refining and heavy metal processing industries (Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal variations in the physical, chemical and biological characteristics of the estuary (Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim 2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been initiated in the CE to understand the level of heavy metal pollution, these were restricted to trace metals distribution (Balachandran et al., 2005) or the influence of anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj, 2006). Recently, few studies were carried out on microbial ecology in the CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;Chandran and Hatha, 2003). However, studies on metal - microbe interaction are hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with different level of heavy metal concentration tounderstand the abundance, diversity and mechanisms of resistance in metal resistant bacteria and its impact on the nutrient regeneration. The present work has also focused on the response of heavy metal resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles
Resumo:
Geochemical composition is a set of data for predicting the climatic condition existing in an ecosystem. Both the surficial and core sediment geochemistry are helpful in monitoring, assessing and evaluating the marine environment. The aim of the research work is to assess the relationship between the biogeochemical constituents in the Cochin Estuarine System (CES), their modifications after a long period of anoxia and also to identify the various processes which control the sediment composition in this region, through a multivariate statistical approach. Therefore the study of present core sediment geochemistry has a critical role in unraveling the benchmark of their characterization. Sediment cores from four prominent zones of CES were examined for various biogeochemical aspects. The results have served as rejuvenating records for the prediction of core sediment status prevailing in the CES
Resumo:
The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.