110 resultados para Metal Homeostasis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study gave the first report on the biennial metal divergence in the sediments of Cochin Estuarine system (CES). Surface sediments from 6 prominent regions of CES were sampled in 2009 and 2011 for the geochemical and environmental assessment of trace metals (Cd, Co, Cr, Cu, Pb Fe, Mg, Mn, Ni and Zn).Besides texture, total organic carbon (TOC) and CHNS were also done. The contamination and risk assessment were performed by determining geochemical indices. Comparison with sediment quality guidelines were done to assess the probability for ecotoxicological threat to the estuary. Results showed that the measured heavy metals had varied spatial distribution patterns, indicating that they had complex origins and controlling factors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cochin estuary (CE), which is one of the largest wetland ecosystems, extends from Thanneermukkam bund in the south to Azhikode in the north. It functions as an effluent repository for more than 240 industries, the characteristics of which includes fertilizer, pesticide, radioactive mineral processing, chemical and allied industries, petroleum refining and heavy metal processing industries (Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal variations in the physical, chemical and biological characteristics of the estuary (Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim 2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been initiated in the CE to understand the level of heavy metal pollution, these were restricted to trace metals distribution (Balachandran et al., 2005) or the influence of anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj, 2006). Recently, few studies were carried out on microbial ecology in the CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;Chandran and Hatha, 2003). However, studies on metal - microbe interaction are hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with different level of heavy metal concentration tounderstand the abundance, diversity and mechanisms of resistance in metal resistant bacteria and its impact on the nutrient regeneration. The present work has also focused on the response of heavy metal resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical composition is a set of data for predicting the climatic condition existing in an ecosystem. Both the surficial and core sediment geochemistry are helpful in monitoring, assessing and evaluating the marine environment. The aim of the research work is to assess the relationship between the biogeochemical constituents in the Cochin Estuarine System (CES), their modifications after a long period of anoxia and also to identify the various processes which control the sediment composition in this region, through a multivariate statistical approach. Therefore the study of present core sediment geochemistry has a critical role in unraveling the benchmark of their characterization. Sediment cores from four prominent zones of CES were examined for various biogeochemical aspects. The results have served as rejuvenating records for the prediction of core sediment status prevailing in the CES

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.