126 resultados para broadband antenna
Resumo:
Design of a compact dual frequency microstrip antenna is presented. The structure consists of a slotted circular patch with a dielectric superstrate. The superstrate,not only acts as a radome, but improves the bandwidth and lowers the resonant frequency also. The proposed design provides an overall size reduction of about 60% compared to an unslotted patch along with good efficiency,gain and bandwidth. The polarization planes at the two resonances are orthogonal and can be simultaneously excited using a coaxial feed. Parametric study of this configuration showed that the frequency ratio of the two resonances can be varied from 1.17 to 1.7 enabling its applications in the major wireless communication bands like AWS, DECT,PHS,Wi.Bro, ISM,and DMB. Design equations are also deduced for the proposed antenna and validated.
Resumo:
An ultra-wideband (UWB) printed slot antenna, suitable for integration with the printed circuit board (PCB) of a wireless universal serial-bus (WUSB) dongle is presented. The design comprises a near-rectangular slot fed by a coplanar waveguide printed on a PCB of width 20 mm. The proposed design has a large bandwidth covering the 3.1-10.6 GHz UWB band, unaffected by the ground length, and omnidirectional radiation patterns. A linear phase response throughout the band further confirms its suitability for high-speed wireless connectivity.
Resumo:
A compact, planar, wideband antenna designed by modifying the coplanar waveguide is presented in this letter. The proposed antenna finds a wide range of applications including advanced wireless systems (AWS), DCS-1800, DCS-1900/PCS/PHS, WiBro, BlueTooth/WLAN/WiBree/ZigBee, DMB, Global Star Satellite Phones, and digital cordless phones. Wide bandwidth > 75% centered at 2.50 GHz, quasi-omnidirectional radiation coverage along with moderate gain and efficiency are the salient features of the antenna. A prototype fabricated on a substrate with dielectric constant 4.4 and thickness 1.6 mm occupies an area of (31times 64) mm2. Details of antenna design and discussions on the effect of various antenna parameters on the radiation characteristics are presented.
Resumo:
A compact dual-band uniplanar antenna for operation in the 2.4/5.2/5.8 GHz WLAN/HIPERLAN2 communication bands is presented. The dual-band antenna is obtained by modifying one of the lateral strips of a slot line, thereby producing two different current paths. The antenna occupies a very small area of 14.5times16.6 mm2 including the ground plane on a substrate having dielectric constant 4.4 and thickness 1.6 mm at 2.2 GHz. The antenna resonates with two bands from 2.2 to 2.52 GHz and from 5 to 10 GHz with good matching, good radiation characteristics and moderate gain
Resumo:
Design of a dual linearly-polarised microstrip patch antenna, excited by two orthogonal microstrip feed lines, is presented. A reduction in patch size of 35% is obtained when compared to a square patch operating at the same frequency. The polarisations are oriented at +45 and - 45 with an isolation of more than 36 dB between the ports. Unlike earlier designs, the proposed structure provides better gain.
Resumo:
Design of a dual-port circular patch antenna with a sector-slot for dual-frequency operation is presented. The antenna resonates at two distinct frequencies with orthogonal polarizations and broad radiation characteristics. Unlike the conventional circular patch, this antenna can be microstrip-fed to operate at either of the resonances. The two polarizations can be simultaneously excited using two electromagnetically coupled ports with an isolation better than −30 dB between the ports. This antenna has the added advantage of size reduction of 44% compared to the conventional circular patch without any reduction in gain.
Resumo:
A novel fixed frequency beam scanning microstrip leaky wave antenna is reported. The beam scanning at fixed frequency is achieved by reactive loading. Simulation and measured results shows frequency scanability of 80° as well as fixed frequency beam steering of 68° over the −10 dB impedance band of 4.56–5.06 GHz.
Resumo:
A compact dual-band printed antenna covering the 2.4 GHz (2400-2485 MHz) and 5.2 GHz (5150-5350 MHz) WLAN bands is presented. The experimental analysis shows a 2:1 VSWR bandwidth of up to 32 and 8% for 2.4 and 5.2 GHz, respectively. The measured radiation patterns are nearly omnidirectional, with moderate gain in both the WLAN bands.
Resumo:
A new electronically reconfigurable dual frequency microstrip patch antenna with highly simplified varactor tuning circuitry is presented. The proposed design allows relatively independent selection of the two operating frequencies. Tuning ranges of 7.1 and 4.1% are realised for the two resonant frequencies without the use of any matching circuits.
Resumo:
The author presents the development of a new dielectric resonator antenna(DRA) suitable for wideband wireless communication applications.The design comprises of a simple cylindrical dielectric resonator (DR) and a microstrip feed, in a low radiation-Q structure,enabling wide impedance bandwidth.The radiation pattern is conical shaped,resulted from thew low-Q structure.Dielectric constant of the DR,its dimensions and topological parameters of the feed line are the major design parameters of the antenna.By proper selection of these parameters,the DRA can be operated over a wideband width covering multiple wireless applications.The antenna is simulated using Ansoft HFSS TM and measured using HP 8510C vector network analyser.Some of the measured results are confirmed by using the Finite Difference Time Domain(FDTD) technique implemented in MATLAB.
Resumo:
This thesis presents the microwave dielectric properties of two novel dielectric resonator materials with the composition Ca(Ca1/4Nb2/4Ti1/4)O3 and Ca(Ca1/4Ta2/4Ti1/4)O3 ceramics and their application in the fabrication of wideband antennas. The microwave dielectric properties of the ceramics were tailored by several techniques such as doping, glass addition and solid solution formations in the complex perovskite A and B-sites with suitable substitutions. Among the wide variety of DRs developed, ceramic resonators with optimum properties were identified to fabricate broadband dielectric resonator loaded microstrip patch antennas. Furthermore, wideband, high permittivity dielectric resonator antennas were fabricated and explored the possibility of tuning their characteristics by modifying the feed line geometries.
Resumo:
This paper presents the design of a new type of corner reflector (CR) antenna and the experimental investigation of its radiation characteristics. The design involves the addition of planar parallel periodic strips to the two sides of a CR antenna. The position, angular orientation, and number of strips have a notable effect on the H-plane radiation characteristics of the antenna. Certain configurations of the new antenna are capable of producing very sharp axial beams with gain on the order of 5 dB over the square corner reflector antenna. A configuration that can provide symmetric twin beams with enhanced gain and reduced half-power beam width (HPBW) is also presented.
Resumo:
A novel cavity perturbation technique using coaxial cavity resonators for the measurement of complex permittivity of liquids is presented. The method employs two types of resonators (Resonator I and Resonator II). Resonator I operates in the frequency range 600 MHz-7 GHz and resonator II operates in the frequency range 4 GHz-14 GHz. The introduction of the capillary tube filled with the sample liquid into the coaxial resonator causes shifts in the resonance frequency and loaded Q-factor of the resonator. The shifts in the resonance frequency and loaded Q-factor are used to determine the real and imaginary parts of the complex permittivity of the sample liquid, respectively. Using this technique, the dielectric parameters of water and nitrobenzene are measured. The results are compared with those obtained using other standard methods. The sources of errors are analyzed.
Resumo:
Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.
Resumo:
With the advent of satellite communication and radio astronomy, the need for large and efficient reflector antennas had triggered a widespread investigation in reflector feed design techniques. Major improvements sought are reduction in spill-over, cross polarization losses and the enhancement of aperture efficiency. The search for such a feed culminated in the corrugated horn. The main idea behind the present work is to use the H-plane sectoral horns fitted with,corrugated flanges as feeds of a paraboloid and see how the secondary pattern of the reflector antenna varies with different parameters of the feed. An offset paraboloid is used as the secondary reflector in order to avoid the adverse effect of aperture ‘blocking by the feed horn structure on the secondary radiation pattern. The measurements were repeated for three different H-plane sectoral horns with the same set of corrugated flanges at various X-band frequencies. The following parameters of the whole system are studied: (a) Beam shaping. (b) Gain. (c) Variation of VSWR and (d) Cross polarization