123 resultados para POLYMER SCIENCE
Resumo:
Studies on the chemistry of vulcanization” play a central role in the efforts to achieve better product performance from natural and synthetic rubbers. They provide rubber technologists with an increasingly realistic picture of molecular framework of vulcanizates, from which relation between physical properties and chemical constitution may be deduced. Moreover, these studies are also aimed at the understanding of the vulcanization process, in sufficiently advanced chemical mechanistic terms, so that the effect of changes on vulcanizate structure can rationally be predicted.“ The study of accelerator activity ofthe binary system containing ATU with TMTD, and with MBTS in sulphur vulcanization of dry natural rubber using standard procedures for compounding and vulcanization is described in the third chapter. The study of the gum vulcanizates form part I of this chapter The behaviour of the experimental mixes were compared with those of the controls containing thiourea; diphenyl guanidine
Resumo:
The thesis consists of seven chapters. The first chapter is a general introduction on rice by-products, their composition and utilization at present. The different milling processes adopted in paddy and the major by-products obtained from these processes viz. rice husk, rice bran, rice bran oil and rice husk ash are described. The physical properties and chemical composition of the rice husk and its general uses are given in detail. The chemical composition of the rice bran and its separation from paddy is also included. The details of solvent extraction process used for obtaining rice bran oil and also its chemical constitution is discussed in this chapter. Also described is the preparation and the different uses of rice husk ash. A literature survey is also done on the utilization of rice by-products in rubber and plastics as on today. The scope and objectives of the present study is also included at the end of this chapter.
Resumo:
The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.
Resumo:
Petroleum, a mixture of organic compounds, comes from underground rock formations ranging in age from ten to several hundred million years. The process by which it is formed and developed is not yet completely known. Studies indicate that petroleum is formed mainly from microscopic-sized marine animals and plants. When these organisms died in water of low oxygen content, they did not decompose. Thus their remains sank to the bottom to be buried under accumulations of sediment. Their conversion to petroleum remains a subject of research even today.
Resumo:
The main objective of the present study was to explore ways of making latex products more cost effective and versatile. Polyethylene glycol was identified as a surface active agent in latex compounds which improves the filler-polymer interaction and also distributes the filler more uniformly. The use of such surface active agents can develop filled latex products with improved mechanical properties at a lower cost. In this study dispersions of carbon black and silica were successfully added to NR latex under high speed stirring without destabilizing latex.
Resumo:
The present study was undertaken to evaluate the effectiveness of a few physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. The overall objective of this study is to evaluate the effectiveness of certain physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. survey of the chemical characteristics of the effluents discharged from rubber processing units showed that the effluents from latex concentration units were the most polluting
Resumo:
Biodegradation is the chemical degradation of materials brought about by the action of naturally occurring microorganisms. Biodegradation is a relatively rapid process under suitable conditions of moisture, temperature and oxygen availability. The logic behind blending biopolymers such as starch with inert polymers like polyethylene is that if the biopolymer component is present in sufficient amount, and if it is removed by microorganisms in the waste disposal environment, then the base inert plastic should slowly degrade and disappear. The present work focuses on the preparation of biodegradable and photodegradable blends based on low density polyethylene incorporating small quantities of ionomers as compatibilizers. The thesis consists of eight chapters. The first chapter presents an introduction to the present research work and literature survey. The details of the materials used and the experimental procedures undertaken for the study are described in the second chapter. Preparation and characterization of low density polyethylene (LDPE)-biopolymer (starch/dextrin) blends are described in the third chapter. The result of investigations on the effect of polyethylene-co-methacrylic acid ionomers on the compatibility of LDPE and starch are reported in chapter 4. Chapter 5 has been divided into two parts. The first part deals with the effect of metal oxides on the photodegradation of LDPE. The second part describes the function of metal stearates on the photodegradation of LDPE. The results of the investigations on the role of various metal oxides as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends are reported in chapter 6. Chapter 7 deals with the results of investigations on the role of various metal stearates as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends. The conclusion of the investigations is presented in the last chapter of the thesis.
Resumo:
The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.
Resumo:
Light emitting polymers (LEPs) are considered as the second generation of conducting polymers. A Prototype LEP device based on electroluminescence emission of poly(p-phenylenevinylene) (PPV) was first assembled in 1990. LEPs have progressed tremendously over the past 20 years. The development of new LEP derivatives are important because polymer light emitting diodes (PLEDs) can be used for the manufacture of next-generation displays and other optoelectronic applications such as lasers, photovoltaic cells and sensors. Under this circumstance, it is important to understand thermal, structural, morphological, electrochemical and photophysical characteristics of luminescent polymers. In this thesis the author synthesizes a series of light emitting polymers that can emit three primary colors (RGB) with high efficiency
Resumo:
The electrical properties of polymers make up an inherently interdisciplinary topic, being closely associated, on the one hand, with the mechanical properties of polymers polarization and relaxation) and, on the other hand, with the semi conductive properties (conduction and break down). In addition, unlike conventional technologies, which use these properties in its various applications like antistatic coatings, rechargeable batteries, sensors, electrochromic devices, electrochemical devices etc, microwave technology extract the microwave absorbing ability of electrically conducting polymers. The conducting polymers are widely used in its potential applications like electro magnetic interference shielding, satellite communication links, beam steering radars, frequency selective surfaces etc. Considering the relevance of microwave applications of conducting polymers, the study of microwave properties of conducting polymers stands poised to become a compelling choice for synthetic chemists and condensed - matter physicists, physical chemists and material scientists, electrochemists and polymer scientists. The main aim of the present work is to study the microwave and low frequency properties of various conducting polymers, conducting semi-interpenetrating networks, conducting copolymers and to characterise it. Also this thesis collated the microwave properties of these conducting systems and exposes the various technologically important applications in the industrial, scientific, communication and defence applications.
Studies On Thermoplastic Elastomers With Special Reference To Triblock Copolymers And Nbr/Pvc Blends
Resumo:
Thermoplastic elastomers are a relatively new class of materials which compete with thermoset rubbers in some areas and thermoplastic materials in other areas. The main thrust of the present investigation is a comparative study’ on commercially .available triblock. styrene thermoplastic elastomers and those derived from blends of acrylonitrile-butadiene rubber and poly(vinyl chloride). The styrene—based thermoplastic elastomers are gaining acceptance as a replacement for both natural and synthetic rubber‘ in many‘ applications. TPEs based on blends of elastomers and plastics ix: the fastest growing segment of the broad class of thermoplastic elastomers. Broad applicability and simple technology of production are the attractive features of this class of TPES. NBR/PVC thermoplastic elastomers were selected for this investigation due to the versatility of PVC, its number one position, low cost. ability to Ina compounded into various flexible and rigid form with good physical and chemical and weathering properties etc., which will be passed over to PVC blends especially NBR/PVC blends which are known to form miscible systems
Resumo:
In the present study, the photochemical depolymerisation of NR in toluene, in presence of H202 and a homogenizing solvent (Methanol/Tetrahydro— furan) so as to get hydroxyl terminated liquid natural rubber (HTNR) has been carried out. The copolymeri— sation of this product with butane 1,4 diol and toluene 2,4 diisocyanate in presence of a catalyst, dibutyl tin dilaurate, to produce polyurethanes with HTNR soft segments is also reported. The preparation of block copolymers based on poly(ethylene oxide) with varying molecular weights and HTNR are also discussed along with a detailed study on their thermal and mechanical properties
Resumo:
The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.
Resumo:
Attempts have been made to attain satisfactory network structures in each of the phases of a rubber blend by minimising the cure rate imbalance by employing methods such as grafting of accelerators to the slow curing rubber, chemically bonding the crosslinking agents to the rubber in which it has lower solubility, functionalisation of the slow curing rubber, masterbatching of the curing agents to the slow curing rubber etc. Functionalisation of the slow curing constituents of NR/IIR and NR/EIPDM blends is tried using novel reagents as the first part of this study. However, the crux of the present study is a more direct approach to attaining a covulcanized state in NR/IIR and NR/EPDM blends: Precuring the slow curing rubber (IIR or EPDM) to a low level when it can still blend with NR and then to ck) the final curing after blending with NR. TNM3 precuring is also likely to minimise the viscosity mismatch. Since a low level of resmmal crosslink density is likely to be present lJ1 reclaimed rubbers, blending heat resistant reclaimed rubber such as butyl reclaim with NR may also have the same effect of precuring IIR, and then blending with NR. Hence use of IIR reclaim for developing blends with NR is also proposed to be investigated in this study
Resumo:
In the present work, studies on vulcanization, rheology and reinforcement of natural rubber latex with special reference to accelerator combinations, surface active agents and gamma irradiation have been undertaken. In vulcanization, the choice of vulcanization system, the extent and mc-zie of vulcanization and network structure of the vulcanizate are important factors contributing to the overall quality of the product. The vulcanization system may be conventional type using elemental sulfur or a system involving sulfur donors. The latter type is used mainly in the manufacture of heat resistant products. For improving the technical properties of the products such as modulus and tensile strength, different accelerator combinations are used. It is known that accelerators have a strong effect on the physical properties of rubber vulcanizates. A perusal of the literature indicates that fundamental studies on the above aspects of latex technology are very limited. Thereforea systematic study on vulcanization, rheology and reinforcement of natural rubber latex with reference to the effect of accelerator combinations, surface active agents and gamma irradiation has been undertaken. The preparation and evaluation of some products like latex thread was also undertaken as a part of the study. The thesis consists of six chapter