126 resultados para Natural rubber latex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc butyl xanthate [Zn(bxt)2] was prepared in the laboratory . The effect of this xanthate with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of natural rubber ( NR), polybutadiene rubber (BR), and NR/BR blend has been studied at different temperatures. The amounts of Zn (bxt)2 and ZDC in the compounds were optimized by varying the amount of ZDC from 0 . 75 to 1.5 phr and Zn (bxt)2 from 0 . 75 to 1 .5 phr. The cure characteristics were also studied . HAF filled NR, BR, and NR / BR blend compounds were cured at different temperatures from 60 to 150 C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density and elongation at break, compression set, abrasion resistance, etc. were evaluated. The results show that the mechanical properties of 80NR/20BR blends are closer to that of NR vulcanizates, properties of 60NR/40BR blends are closer to BR vulcanizates, while the 70NR/30BR blends show an intermediate property.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc salts of ethyl, isopropyl and butyl xanthates were prepared in the laboratory. The effect of these xanthates with zinc diethyldithiocarbamate (ZDC) on the vulcanization of HAF filled NR compound has been studied at different temperatures. The rubber compounds with the three xanthate accelerators and ZDC were cured at various temperatures from 60°C to 150°C. The sheets were moulded and properties such as tensile strength , tear strength , cross-link density, elongation -at-break, compression set, heat build up, abrasion resistance, flex resistance , etc. were evaluated . The properties showed that zinc xanthate/ZDC accelerator combination has a positive synergistic effect on the mechanical properties of NR compounds. The curing of HAF filled NR compound containing zinc xanthate /ZDC is slightly slower than the curing of the corresponding gum compounds . It is observed that, by gradually increasing the amount of the accelerator, the cure time of black filled NR compound can be made equal to that of the gum compou

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethylene-propylene-diene rubber (EPDM) and isobutylene-isoprene rubber (IIR) were compounded, precured to a low degree, and then were blended with natural rubber (NR). The compounding ingredients for NR were then added and the final curing was done. NR/ EPDM and NR/IIR blends, prepared using this method, were found to possess much improved mechanical properties as compared to their conventional counterparts. The optimum precuring crosslink density that has to be given to the EPDM and IIR phases has been determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Butyl (IIR) tube reclaim (RR) was mixed with carbon black filled natural rubber (NR) compounds at various percentages. The blend containing a low percentage of RR was found to show improved ageing resistance and improved processability with out much reduction in the mechanical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer-solvent interaction parameters for the blends of natural rubber (NR) with styrene-butadiene rubber (SBR) and polybutadiene rubber ( BR) are calculated using the Flory-Rehner equation by equating the network density of the vulcanizates in two solvents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blends of natural rubber (NR) with styrene-butadiene rubber (SBR), polybutadiene rubber (BR), ethylene-propylene terpolymer (EPDM) and acrylonitrile-butadiene rubber (NBR) were vulcanised using an efficient vulcanisation (EV) system and a semi-EV system. Compatible blends show a definite pattern of curing whereas the incompatible blends show no such pattern.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blends of 50/50 natural rubber (NR) and styrene-butadiene rubber (SBR) are vulcanized using several conventional and semi-EV systems. The cure characteristics and vulcanizate properties are compared. The quantity and quality of crosslinks in each case are deciphered by chemical probes to correlate them with the vulcanizate properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A carbon black filled 50/50 Natural Rubber (NR)/Polybutadiene Rubber (BR) blend is vulcanized using several conventional systems designed by varying the amounts of sulphur and accelerator . The cure characteristics and the vulcanizate properties are compared. The quality and quantity of crosslinks in each case are deciphered by chemical probes to correlate them with the vulcanizate properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compounding of styrene-butadiene copolymer/polybutadiene , natural rubber/ ethylene-propylene-diene terpolymer and natural rubber/butadiene-acrylonitrile copolymer blends was done in three different ways and their curing behaviour and the tensile properties of the es are compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paraphenylenediamine and diphenylamine were chemically attached to natural rubber during mastication . The rubber bound antioxidants were characterized by TLC, 'H-NMR, IR and TGA. The efficiency and permenance of these bound antioxidants were compared with a conventional amine type antioxidant in filled natural rubber vulcanizates . The rubber bound antioxidants were found to be less volatile and less extractable as compared to conventional antioxidants. The vulcanizates showed improved ageing resistance as compared to vulcanizates containing conventional antioxidants. This semisolid rubber bound antioxidant can reduce the amount of plasticizer required for compounding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcellular (MC) soles based on polybutadiene (BR) and low-density polyethylene (LDPE) blends for low-temperature applications were developed. A part of BR in BR-LDPE blend was replaced by natural rubber (NR) for property improvement. The BR-NR-LDPE blend-based MC sole shows good technical properties. Sulphur curing and DCP curing were tried in BR-LDPE and NR-BR-LDPE blends. Study shows that sulphur-cured MC sheets possess better technical properties than DCPcured MC sheets. 90/10 BR-LDPE and 60/30/10 BR-NR-LDPE blend combinations are found to be suitable for low-temperature applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.