86 resultados para microwave degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unusual copper(II) complex [Cu(L1a)2Cl2] CH3OH H2O H3O+Cl (1a) was isolated from a solution of a novel tricopper(II) complex [Cu3(HL1)Cl2]Cl3 2H2O (1) in methanol, where L1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex 1a was followed by time-dependant monitoring of the UV–visible spectra, which reveals degradation of ligand backbone as intensity loss of bands corresponding to O?Cu(II) charge transfer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel naphthyridine derivatives 3 and 4 was prepared from substituted pyridine 2 and ketones using ZnCl2 as catalyst under microwave irradiation conditions. All the compounds were evaluated for AChE inhibitory activity and promising compounds 3d, 3e, 4b, and 4g was identified. Representative compounds 3d and 3e were found to show insignificant THLE-2 liver cell viability/toxicity. The binding mode between X-ray crystal structure of human AChE and compounds was studied using molecular docking method and fitness scores were found to be in good correlation with the activity data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we report flexible, non corrosive, and light weight nickel nanoparticle@multi-walled carbon nanotube–polystyrene (Ni@MWCNT/PS) composite films as microwave absorbing material in the frequency range of S band (2-4 GHz). Dielectric permittivity and magnetic permeability of composites having 0.5 and 1.5 wt. % filler amount were measured using the cavity perturbation technique. Reflection loss maxima of 33 dB (at 2.7 GHz) and 24 dB (at 2.7 GHz) were achieved for 0.5 and 1.5 wt. % Ni@MWCNT/PS composite films of 6 and 4 mm thickness, respectively, suggesting that low concentrations of filler provide significant electromagnetic interference shielding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible and thin single layer microwave absorbers based on strontium ferrite–carbon black–nitrile rubber composites have been fabricated employing a specific recipe and their reflection loss characteristics were studied in the S (2–4 GHz) and X-bands (8–12 GHz). The incorporation of carbon black not only reinforces the rubber by improving the mechanical properties of the composite but also modifies the dielectric permittivity of the composite. Strontium ferrite when impregnated into a rubber matrix imparts the required magnetic permeability to the composite. The combination of strontium ferrite and carbon black can then be employed to tune the microwave absorption characteristics of the resulting composite. The complex dielectric permittivity and permeability were measured by employing a cavity perturbation technique. The microwave absorption characteristics of composites were modelled in that an electromagnetic wave incident normally on the metal terminated single layer absorber. The influence of filler volume fraction, frequency, absorber thickness on the bandwidth of absorption are discussed and correlated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexile single layer electromagnetic wave absorbers were designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands. Effective dielectric permittivity and magnetic permeability were measured using cavity perturbation method in the frequency range of 2–12 GHz. The microwave absorbing characteristics of the composites were studied in the S, C, and X-bands employing a model in which an electromagnetic wave is incident normally on a metal terminated single layer. Reflection loss exceeding 20 dB is obtained for all the samples in a wide frequency range of 2–12 GHz when an appropriate absorber thickness between 5 and 9mm is chosen. The impact of carbon black is clearly observed in the optimized composites on the mechanical strength, thickness, band width of absorption, dielectric properties,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrite composites are magnetic composites consisting of fine particles of metal ferrites dispersed in the polymer matrix. These composites have a variety of applications as flexible magnets, pressure/photo sensors and microwave absorbers. Polymers and magnetic materials play a very important role in our day to day life. Both natural and synthetic polymers are today indispensable to mankind. The polymers, which include rubber, plastics and fibers, make life easier and more comfortable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO micro particles in the range 0.4-0.6 μm were synthesized by microwave irradiation method. The XRD analysis reveals that the sample is in the wurtzite phase with orientation along the (101) plane. SAED pattern of the sample reveals the single crystalline nature of the micro grains. TEM images show the formation of cylindrical shaped ZnO micro structures with hexagonal faces. The optical phonon modes were slightly shifted in the Raman spectrum,attributed to the presence of various crystalline defects and laser induced local heating at the grain boundaries. A broad transmission profile was observed in the FTIR spectrum from 1550-3400 cm-1 which falls in the atmospheric transparency window region. PL spectrum centered at 500 nm with a broad band in the region 420-570 nm comprised of different emission peaks attributed to transition between defect levels. Various emission levels in the sample were expliained with a band diagram

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 20th century witnessed the extensive use of microwaves in industrial, scientific and medical fields. The major hindrance to many developments in the ISM field is the lack of knowledge about the effect of microwaves on materials used in various applications. The study of the interaction of microwaves with materials demanded the knowledge of the dielectric properties of these materials. However, the dielectric properties of many of these materials are still unknown or less studied. This thesis is an effort to shed light into the dielectric properties of some materials which are used in medical, scientific and industrial fields. Microwave phantoms are those materials used in microwave simulation applications. Effort has been taken to develop and characterize low cost, eco-friendly phantoms from Biomaterials and Bioceramics. The interaction of microwaves with living tissues paved way to the development of materials for electromagnetic shielding. Materials with good conductivity/absorption properties could be used for EMI shielding applications. Conducting polymer materials are developed and characterized in this context. The materials which are developed and analyzed in this thesis are Biomaterials, Bioceramics and Conducting polymers. The use of materials of biological origin in scientific and medical applications provides an eco-friendly pathway. The microwave characterization of the materials were done using cavity material perturbation method. Low cost and ecofriendly biomaterial films were developed from Arrowroot and Chitosan. The developed films could be used in applications such as microwave phantom material, capsule material in pharmaceutical applications, trans-dermal patch material and eco-friendly Band-Aids. Bioceramics with better bioresorption and biocompatibility were synthesized. Bioceramics such as Hydroxyapatite, Beta tricalcium phosphate and Biphasic Calcium Phosphate were studied. The prepared bioceramics could be used as phantom material representing Collagen, Bone marrow, Human abdominal wall fat and Human chest fat. Conducting polymers- based on Polyaniline, are developed and characterized. The developed materials can be used in electromagnetic shielding applications such as in anechoic chambers, transmission cables etc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of Electronics Engineering