138 resultados para Thermodynamics of polymer Blends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the development of short nylon fiber-reclaimed rubber/elastomer composites. Three rubbers viz, natural rubber, acrylonitrile butadiene rubber and styrene butadiene rubber were selected and were partially replaced with reclaimed rubber. The blend ratio was optimized with respect to cure characteristics and mechanical properties. Reclaimed rubber replaced 40 parts of NR and SBR and 20 parts of NBR without much affecting the properties. These blends were then reinforced with short nylon fibers. The mechanical properties of the composites were studied in detail. In all the cases the tensile strength, tear strength and the abrasion resistance increased with increase in fiber content. In the case of NRlreclaimed rubber blends, the tensile strength-fiberloading relationship was non-linear where as in the case of NBRlreclaimed rubber blends and SBRlreclaimed rubber blends the tensile strength-fiber loading relationship was linear. All the composites showed anisotropy in mechanical properties. The effect of bonding system on the composite properties was also studied with respect to cure characteristics and mechanical properties. For this, a 20 phr fiber loaded reclaimed rubber/elastomer composites were selected and the effect of MDI/PEG resin system was studied. The resin used was 5 phr and the resin ratios used were 0.67: I, 1:1, 1.5:1 and 2:1. The bonding system improved the tensile strength, tear strength and abrasion resistance. The best results are with SBRlreclaimed rubber-short nylon fiber composites. The optimized resin ratio was 1:1 MDI/PEG for all the composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary aim of this work has been to develop conductive silicone and nitrile rubbers, which are extensively used for making conductive pads in telephone sets, calculators and other applications. Another objective of the work has been to synthesise and characterize novel conducting polymers based on glyoxal and paraphenylenediamine- poly(p-phenylenediazomethine. Conducting polymer matrices were developed from polymer blends such as poly(pphenylenediazomethine), polyethylene, PVC and silica and their properties were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study the preparation and characterisation of rubber ferrite composites (RFC) containing barium ferrite (BaF) and strontium ferrite (SrF) have been dealt with. The incorporation of the hard ferrites into natural and nitrile rubber was carried out according to a specific recipe for various loadings of magnetic fillers. For this, the ferrite materials namely barium ferrite and strontium ferrite having the general formula MO6Fe2O3 have been prepared by the conventional ceramic techniques. After characterisation they were incorporated into the natural and nitrile rubber matrix by mechanical method. Carbon black was also incorporated at different loading into the rubber ferrite composites to study its effect on various properties. The cure characteristics, mechanical, dielectric and magnetic properties of these composites were evaluated. The ac electrical conductivity of both the ceramic ferrites and rubber ferrite composites were also calculated using a simple relation. The investigations revealed that the rubber ferrite composites with the required dielectric and magnetic properties can be obtained by the incorporation of ferrite fillers into the rubber matrix, without compromising much on the processability and mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the findings of a study on incorporating vanous thermoset resins into natural rubber for property improvement. Natural rubber is an important elastomer with the unique attribute of being a renewable agricultural product. The study was undertaken to investigate the extent to which the drawbacks of natural rubber, especially its poor thermal and oil resistance propel1ies could be nullified by blending with common thermoset resins. A thorough and comparative understanding of the perfonnance of different resins from this viewpoint will be beneficial for both natural IUbber processors and consumers. In this study the thennoset resins used were epoxy resin, phenolics, epoxidised phenolics and unsaturated polyester resin.The resins were incorporated into NR during compounding and their effects on the properties of NR were studied after vulcanization. Properties were studied for both gum and filled N R compounds. The important properties studied are cure characteristics, mechanical properties, ageing propel1ies, thermal propel1ies, crosslink density and extractability. Characterization studies were also conducted using FTIR, TGA and DSC.Improvement in mechanical properties was noticed in many cases. The results show that most resins lead to a reduction in the cure time of NR. The perfonnance of epoxy resin is most noticeable in this respect. Mechanical properties of the modified IUbber show maximum improvement in the case of epoxidised novolacs. Most resins are seen to improve the thermal and oil resistance propel1ies of NR. Epoxy novolacs show maximum effect in this respect also. However the presence of tillers is found to moderate the positive effects of the thermoset resins considerably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aims at the preparation of an ABS (acrylonitrile-butadiene-styrene) type toughened thermoplastic by melt blending polystyrene (PS) and powdered nitrile rubber (NBR). The product is an interesting class of toughened thermoplastic, which would combine the superior mechanical and processing characteristics of PS and the excellent oil-resistant properties of NBR. In this thesis an attempt has been made to investigate systematically the effect of compatibilisation and dynamic vulcanisation on the morphology and properties of powdered nitrile rubber toughened polystyrene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project explores the utilization of cardanol in various capacities for rubber processing. Cardanol is a phenol with a long side chain in the meta position of the benzene ring. It is obtained by the vacuum distillation of cashew Hut shell liquid (CNSL) which is a cheap agro-byproduct. In this study, the plasticizer property of cardanol was investigated in silica filled and HAF black filled NR, NBR, EPDM and CR by comparing cure characteristics and mechanical properties of vulcanizates containing conventional plasticizer with those containing cardanol as plasticizer. The co-activator, antioxidant and accelerator properties were investigated in gum samples of NR, NBR, EPDM and CR by comparing the properties of vulcanizates which contain conventional co-activator, antioxidant and accelerator with those in which each of them was replaced by cardanol. The general effectiveness of cardanol was investigated by determination of cure time , measurement of physical and mechanical properties, ageing studies, crosslink density, extractability, FTIR spectra, TGA etc.The results show that cardanol can be a substitute for aromatic oil in both silica filled and HAF black filled NR. Again, it can replace dioctyl phthalate in both silica filled and HAF black filled NBR. Similarly, cardanol Can replace naphthenic oil in silica filled as well as HAF black filled EPDM and CR. The cure characteristics and mechanical properties are comparable in all the eight cases. The co-activator property of cardanol is comparable to stearic acid in all the four rubbers. The cure characteristics and mechanical properties in this case are also comparable. The antioxidant ,property of cardanol is comparable to TQ in all the four rubbers. The antioxidant property of cardanol is comparable to TQ in all the four case of NBR and EPDM.The accelerator property of cardarlol is comparable with CBS in the case of NBR and EPDM. No accelerator property is observed in the case of NR. The accelerator property of cardanol in CR is not negligible when compared with TMTD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study the preparation and characterisation of rubber ferrite composites containing nickel ferrite and gamma ferric oxide have been dealt with.Synthetic rubbers viz. ethylene propylene diene rubber and neoprene rubber were used for the incorporation of nickel ferrite and gamma ferric oxide for the synthesis of RFCs. Incorporation of ferrites were carried out according to a specific recipe for various loadings of the magnetic fillers. The ferrites used for the preparation of RFCs were synthesised using sol-gel method and structural characterisation was carried out. Experimental techniques like X-ray diffraction, Transmission electron microscopy and other analytical techniques were used for this. Precharaterised ferrites were then incorporated at different loading into rubber according to conventional mixing methods. The cure characteristics, mechanical, dielectric, magnetic and microwave properties of these composites were evaluated. The effect of carbon black on these properties of RFCs were carried out.