84 resultados para LDPE Blends


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline and oligomeric cobalt phthalocyanine are blended in different proportions by chemical methods. These blends are characterised by spectroscopic methods and dielectric measurements. Dielectric studies on the conducting polymer blends are carried out in the frequency range of 100 kHz to 5MHz from room temperature (300 K) to 373 K. Dielectric permittivity and dielectric loss of these blends are explained on the basis of interfacial polarisation. From the dielectric permittivity studies, ac conductivity of the samples were calculated and the results are correlated. In order to understand the exact conduction mechanism of the samples, dc electrical conductivity of the blends is carried out in the temperature range of 70–300 K. By applying Mott’s theory, it is found that the conducting polymer composites obey a 3D variable range hopping mechanism. The values of Mott’s temperature (T0), density of states at the Fermi energy (N(EF)), range of hopping (R) and hopping energy (W) for the composites are calculated and presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid polymer networks (HPNs) based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The epoxy resins used were epoxidised phenolic novolac (EPN), epoxidised cresol novolac (ECN) and diglycidyl ether of bisphenol A (DGEBA). Epoxy novolacs were prepared by glycidylation of the novolacs using epichlorohydrin. The physical, mechanical, and thermal properties of the cured blends were compared with those of the control resin. Epoxy resins show good miscibility and compatibility with the UPR resin on blending and the co-cured resin showed substantial improvement in the toughness and impact resistance. Considerable enhancement of tensile strength and toughness are noticed at very low loading of EPN. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and diVerential scanning calorimetry (DSC) were employed to study the thermal properties of the toughened resin. The EPN/ UPR blends showed substantial improvement in thermal stability as evident from TGA and damping data. The fracture behaviour was corroborated by scanning electron microscopy (SEM). The performance of EPN is found to be superior to other epoxy resins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are used widely in the fiber-reinforced plastics (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, hybrid polymer networks (HPNs) based on UPR and epoxidized phenolic novolacs (EPNs) were prepared by reactive blending. A HPN is composed of a backbone polymer containing two types of reactive groups that can take part in crosslinking reactions via different mechanisms. EPNs were prepared by glycidylation of novolacs using epichlorohydrin. The novolacs had varying phenol: formaldehyde ratios. Blends of unsaturated polyester with EPN were then prepared. The physical properties of the cured blends were compared with those of the control resin. EPN shows good miscibility and compatibility with the resin and improves the toughness and impact resistance substantially. Considerable enhancement of tensile strength is also noticed at about 5% by weight of epoxidized novolac resin. TGA, DMA, and DSC were used to study the thermal properties of the toughened resin and the fracture behavior was studied using SEM. The blends are also found to have better thermal stability. Blending with EPN can be a useful and cost-effective technique for modification of UPR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earlier studies5773 in our laboratory showed that when a nucleophile is used along with disulphide or sulphenamide accelerators the vulcanization is accelerated greatly and the reaction mechanism is generally nucleophilic in nature. However it was observed that it also changes with the systems under review. The present study, deals with the use of unsubstituted amidino thiourea i.e. aminoimino methyl thiourea(AMT) V in the vulcanization studies of different elastorners and their blends. One of the aims of this study was to get further proof with regard to the theory of nucleophilic reaction mechanism in such binary systems.Mixes containing thiourea are used as controls. AMT is more nucleophilic than TU and this is clear from the fact that the fonner can condense with isothiocynate even in the absence of alkali while TU cannot". Also the guanidinyl group in AMT can facilitate the polarization of the C=S bond favouring a nucleophilic reaction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitisation of natural rubber latex by addition of a small quantity of an anionic surfactant prior to the addition of a coacervant results in quick coagulation. The natural rubber prepared by the novel coagulation method shows improved raw rubber characteristics, better cure characteristics in gum and carbon black filled compounds and improved mechanical properties as compared to the conventionally coagulated natural rubber. Compounds based on dried masterbatches prepared by the incorporation of fluffy carbon black in different forms of soap sensitised natural rubber latices such as fresh latex, preserved field latex, centrifuged latex and a blend of preserved field latex and skim latex show improved cure characteristics and vucanizate properties as compared to an equivalent conventional dry rubber-fluffy carbon black based compound. The latex masterbatch based vulcanizates show higher level of crosslinking and better dispersion of filler. Vulcanizates based on fresh natural rubber latex- dual filler masterbatches containing a blend of carbon black and silica prepared by the modified coagulation process shows very good mechanical and dynamic properties that could be correlated to a low rolling resistance. The carbon black/silica/nanoclay tri-filler - fresh natural rubber latex masterbatch based vulcanizates show improved mechanical properties as the proportion of nanoclay increased up to 5 phr. The fresh natural rubber latex based carbon black-silica masterbatch/ polybutadiene blend vulcanizates show superior mechanical and dynamic properties as compared to the equivalent compound vulcanizates prepared from the dry natural rubber-filler (conventional dry mix)/polybutadiene blends

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic biomass is probably the best alternative resource for biofuel production and it is composed mainly of cellulose, hemicelluloses and lignin. Cellulose is the most abundant among the three and conversion of cellulose to glucose is catalyzed by the enzyme cellulase. Cellulases are groups of enzymes act synergistically upon cellulose to produce glucose and comprise of endoglucanase, cellobiohydrolase and β-glucosidase. β -glucosidase assumes great importance due to the fact that it is the rate limiting enzyme. Endoglucanases (EG) produces nicks in the cellulose polymer exposing reducing and non reducing ends, cellobiohydrolases (CBH) acts upon the reducing or non reducing ends to liberate cellobiose units, and β - glucosidases (BGL) cleaves the cellobiose to liberate glucose completing the hydrolysis. . β -glucosidases undergo feedback inhibition by their own product- β glucose, and cellobiose which is their substrate. Few filamentous fungi produce glucose tolerant β - glucosidases which can overcome this inhibition by tolerating the product concentration to a particular threshold. The present study had targeted a filamentous fungus producing glucose tolerant β - glucosidase which was identified by morphological as well as molecular method. The fungus showed 99% similarity to Aspergillus unguis strain which comes under the Aspergillus nidulans group where most of the glucose tolerant β -glucosidase belongs. The culture was designated the strain number NII 08123 and was deposited in the NII culture collection at CSIR-NIIST. β -glucosidase multiplicity is a common occurrence in fungal world and in A.unguis this was demonstrated using zymogram analysis. A total 5 extracellular isoforms were detected in fungus and the expression levels of these five isoforms varied based on the carbon source available in the medium. Three of these 5 isoforms were expressed in higher levels as identified by the increased fluorescence (due to larger amounts of MUG breakdown by enzyme action) and was speculated to contribute significantly to the total _- β glucosidase activity. These isoforms were named as BGL 1, BGL3 and BGL 5. Among the three, BGL5 was demonstrated to be the glucose tolerant β -glucosidase and this was a low molecular weight protein. Major fraction was a high molecular weight protein but with lesser tolerance to glucose. BGL 3 was between the two in both activity and glucose tolerance.121 Glucose tolerant .β -glucosidase was purified and characterized and kinetic analysis showed that the glucose inhibition constant (Ki) of the protein is 800mM and Km and Vmax of the enzyme was found to be 4.854 mM and 2.946 mol min-1mg protein-1respectively. The optimumtemperature was 60°C and pH 6.0. The molecular weight of the purified protein was ~10kDa in both SDS as well as Native PAGE indicating that the glucose tolerant BGL is a monomeric protein.The major β -glucosidase, BGL1 had a pH and temperature optima of 5.0 and 60 °C respectively. The apparent molecular weight of the Native protein is 240kDa. The Vmax and Km was 78.8 mol min-1mg protein-1 and 0.326mM respectively. Degenerate primers were designed for glycosyl hydrolase families 1, 3 and 5 and the BGL genes were amplified from genomic DNA of Aspergillus unguis. The sequence analyses performed on the amplicons results confirmed the presence of all the three genes. Amplicon with a size of ~500bp was sequenced and which matched to a GH1 –BGL from Aspergillus oryzae. GH3 degenerate primers producing amplicons were sequenced and the sequences matched to β - glucosidase of GH3 family from Aspergillus nidulans and Aspergillus acculateus. GH5 degenerate primers also gave amplification and sequencing results indicated the presence of GH5 family BGL gene in the Aspergillus unguis genomic DNA.From the partial gene sequencing results, specific as well as degenerate primers were designed for TAIL PCR. Sequencing results of the 1.0 Kb amplicon matched Aspergillus nidulans β -glucosidase gene which belongs to the GH1 family. The sequence mainly covered the N-Terminal region of the matching peptide. All the three BGL proteins ie. BGL1, BGL3 and BGL5 were purified by chromatography an electro elution from Native PAGE gels and were subjected to MALDI-TOF mass spectrometric analysis. The results showed that BGL1 peptide mass matched to . β -glucosidase-I of Aspergillus flavus which is a 92kDa protein with 69% protein coverage. The glucose tolerant β -glucosidase BGL5 mass matched to the catalytic C-terminal domain of β -glucosidase-F from Emericella nidulans, but the protein coverage was very low compared to the size of the Emericella nidulans protein. While comparing the size of BGL5 from Aspergillus unguis, the protein sequence coverage is more than 80%. BGL F is a glycosyl hydrolase family 3 protein.The properties of BGL5 seem to be very unique, in that it is a GH3 β -glucosidase with a very low molecular weight of ~10kDa and at the same time having catalytic activity and glucose 122 tolerance which is as yet un-described in GH β -glucosidases. The occurrence of a fully functional 10kDA protein with glucose tolerant BGL activity has tremendous implications both from the points of understanding the structure function relationships as well as for applications of BGL enzymes. BGL-3 showed similarity to BGL1 of Aspergillus aculateus which was another GH3 β -glucosidase. It may be noted that though PCR could detect GH1, GH3 and GH5 β-glucosidases in the fungus, the major isoforms BGL1 BGL3 and BGL5 were all GH3 family enzymes. This would imply that β-glucosidases belonging to other families may also co-exist in the fungus and the other minor isoforms detected in zymograms may account for them. In biomass hydrolysis, GT-BGL containing BGL enzyme was supplemented to cellulase and the performances of blends were compared with a cocktail where commercial β- glucosidase was supplemented to the biomass hydrolyzing enzyme preparation. The cocktail supplemented with A unguis BGL preparation yielded 555mg/g sugar in 12h compared to the commercial enzyme preparation which gave only 333mg/g in the same period and the maximum sugar yield of 858 mg/g was attained in 36h by the cocktail containing A. unguis BGL. While the commercial enzyme achieved almost similar sugar yield in 24h, there was rapid drop in sugar concentration after that, indicating probably the conversion of glucose back to di-or oligosaccharides by the transglycosylation activity of the BGl in that preparation. Compared this, the A.unguis enzyme containing preparation supported peak yields for longer duration (upto 48h) which is important for biomass conversion to other products since the hydrolysate has to undergo certain unit operations before it goes into the next stage ie – fermentation in any bioprocesses for production of either fuels or chemicals.. Most importantly the Aspergillus unguis BGL preparation yields approximately 1.6 fold increase in the sugar release compared to the commercial BGL within 12h of time interval and 2.25 fold increase in the sugar release compared to the control ie. Cellulase without BGL supplementation. The current study therefore leads to the identification of a potent new isolate producing glucose tolerant β - glucosidase. The organism identified as Aspergillus unguis comes under the Aspergillus nidulans group where most of the GT-BGL producers belong and the detailed studies showed that the glucose tolerant β -glucosidase was a very low molecular weight protein which probably belongs to the glycosyl hydrolase family 3. Inhibition kinetic studies helped to understand the Ki and it is the second highest among the nidulans group of Aspergilli. This has promoted us for a detailed study regarding the mechanism of glucose tolerance. The proteomic 123 analyses clearly indicate the presence of GH3 catalytic domain in the protein. Since the size of the protein is very low and still its active and showed glucose tolerance it is speculated that this could be an entirely new protein or the modification of the existing β -glucosidase with only the catalytic domain present in it. Hydrolysis experiments also qualify this BGL, a suitable candidate for the enzyme cocktail development for biomass hydrolysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.