64 resultados para Selenide Crystals
Resumo:
Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3·9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance ofBrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance υ1 mode of BrO3− anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3− anion. At high temperatures, structural rearrangement is taking place for bothH2Omolecule and BrO3 ions leading to the loss ofwater molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.
Resumo:
Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å, = 90°, = 131.568° and = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands
Resumo:
FTIR and Raman spectra of FeClMoO4 single crystal and polycrystalline Na2MoO4, Na2MoO4·2H2O and Na2MoO4·2D2O are recorded and analysed. The band positions for different modes suggest that MoO4 tetrahedron is more distorted in FeClMoO4. The larger splitting observed for the bending modes and partial retention of degeneracy of the asymmetric stretching mode indicate that angular distortion is greater than liner distortion in MoO4 2 ion in FeClMoO4 confirming x-ray data. The non-appearance of the n1 and n2 modes in the IR and partial retention of the degeneracies of various modes show that MoO4 2 ion retains Td symmetry in Na2MoO4. Wavenumber values of the n1 mode indicate that the distortion of MoO4 tetrahedra in the four crystals are in the order FeClMoO4\ Na2MoO4·2H2O\Na2MoO4·2D2O\Na2MoO4. The water bands suggest the presence of two crystallographically distinct water molecules in Na2MoO4·2H2O. They form strong hydrogen bonds
Resumo:
Four manganese(II) complexes Mn2(paa)2(N3)4 (1), [Mn(paa)2(NCS)2] 3/2H2O (2), Mn(papea)2(NCS)2 (3), [Mn(dpka)2(NCS)2] 1/2H2O(4) of three neutral N,N donor bidentate Schiff bases were synthesized and physico- chemically characterized by means of partial elemental analyses, electronic, infrared and EPR spectral studies. Compounds 3 and 4 were obtained as single crystals suitable for X-ray diffraction. Compound 4 recrystallized as Mn(dpka)2(NCS)2. Both the compounds crystallized in the monoclinic space groups P21 for 3 and C2/c for 4. Manganese(II) is found to be in a distorted octahedral geometry in both the monomeric complexes with thiocyanate anion as a terminal ligand coordinating through the nitrogen atom. EPR spectra in DMF solutions at 77 K show hyperfine sextets with low intensity forbidden lines lying between each of the two main hyperfine lines and the zero field splitting parameters (D and E) were calculated.