89 resultados para Polymer Science and Rubber Technology
Studies On Thermoplastic Elastomers With Special Reference To Triblock Copolymers And Nbr/Pvc Blends
Resumo:
Thermoplastic elastomers are a relatively new class of materials which compete with thermoset rubbers in some areas and thermoplastic materials in other areas. The main thrust of the present investigation is a comparative study’ on commercially .available triblock. styrene thermoplastic elastomers and those derived from blends of acrylonitrile-butadiene rubber and poly(vinyl chloride). The styrene—based thermoplastic elastomers are gaining acceptance as a replacement for both natural and synthetic rubber‘ in many‘ applications. TPEs based on blends of elastomers and plastics ix: the fastest growing segment of the broad class of thermoplastic elastomers. Broad applicability and simple technology of production are the attractive features of this class of TPES. NBR/PVC thermoplastic elastomers were selected for this investigation due to the versatility of PVC, its number one position, low cost. ability to Ina compounded into various flexible and rigid form with good physical and chemical and weathering properties etc., which will be passed over to PVC blends especially NBR/PVC blends which are known to form miscible systems
Resumo:
In the present study, the photochemical depolymerisation of NR in toluene, in presence of H202 and a homogenizing solvent (Methanol/Tetrahydro— furan) so as to get hydroxyl terminated liquid natural rubber (HTNR) has been carried out. The copolymeri— sation of this product with butane 1,4 diol and toluene 2,4 diisocyanate in presence of a catalyst, dibutyl tin dilaurate, to produce polyurethanes with HTNR soft segments is also reported. The preparation of block copolymers based on poly(ethylene oxide) with varying molecular weights and HTNR are also discussed along with a detailed study on their thermal and mechanical properties
Resumo:
Starve feeding of single screw extruder was described as an important means of improving the performance characteristics of the extruder. In addition to such improvement with versatility, the starve feeding technique also may affect the mechanical properties of the extrudate since the heat transfer an(l mixing characteristics in the starve fed and Hood fed extruders are not the same. Since the material is more loosely packed in the channels of the starve fed extruder, there may be greater bed mobility and uniformity. Further, the. thermal an(l shear induced degradation are also less since possibilities of developing local high temperatures are less compared to a densely compacted extruder bed. This study has been undertaken mainly to explore the effect of feeding rate on the mechanical properties of rubber and plastic extrudates since the effect of feeding rate has not been analysed from this angle so far.
Resumo:
Earlier studies5773 in our laboratory showed that when a nucleophile is used along with disulphide or sulphenamide accelerators the vulcanization is accelerated greatly and the reaction mechanism is generally nucleophilic in nature. However it was observed that it also changes with the systems under review. The present study, deals with the use of unsubstituted amidino thiourea i.e. aminoimino methyl thiourea(AMT) V in the vulcanization studies of different elastorners and their blends. One of the aims of this study was to get further proof with regard to the theory of nucleophilic reaction mechanism in such binary systems.Mixes containing thiourea are used as controls. AMT is more nucleophilic than TU and this is clear from the fact that the fonner can condense with isothiocynate even in the absence of alkali while TU cannot". Also the guanidinyl group in AMT can facilitate the polarization of the C=S bond favouring a nucleophilic reaction
Resumo:
Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)–acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3:18 10 3 mol/l for a dye concentration of 6:2 10 4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.
Resumo:
This thesis aims to develop new toughened systems for epoxy resin via physical and chemical modifications. Initially the synthesis of DGEBA was carried out and the properties compared with that of the commercial sample. Subsequently the modifier resins to be employed were synthesized. The synthesized resin were characterized by spectroscopic method (FTIR and H NMR), epoxide equivalent and gel permeation chromatography. Chemical modification involves the incorporation of thermoset resins such a phenolics, epoxy novolacs, cardanol epoxides and unsaturated polyester into the epoxy resin by reactive belnding. The mechanical and thermal properties of the blends were studied. In the physical modification route, elastomers, maleated elastomers and functional elastomers were dispersed as micro-sized rubber phase into the continuous epoxy phase by a solution blending technique as against the conventional mechanical blending technique. The effect of matrix toughening on the properties of glass reinforced composites and the effect of fillers on the properties of commercial epoxy resin were also investigated. The blends were characterized by thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy and mechanical property measurements. Among the thermoset blends, substantial toughening was observed in the case of epoxy phenolic novolacs especially epoxy para cresol novolac (ECN). In the case of elastomer blending , the toughest blends were obtained in the case of maleic anhydride grafted NBR. Among functional elastomers the best results were obtained with CTBN. Studies on filled and glass reinforced composites employing modified epoxy as matrix revealed an overall improvement in mechanical properties
Resumo:
Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology
Resumo:
The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology.
Resumo:
Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology
Resumo:
The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.
Resumo:
The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.
Resumo:
Various synthesis routes have been developed in recent years for the preparation of nanoparticles. One of those methods is polymer induced crystallization. The first objective of the present work was to prepare nano ZnO powder by polymer induced crystallization in chitosan solution and to characterize the material using different techniques like TEM, SEM, XRD, FTLR, UV spectroscopy, TGA, DSC etc.The second object of the study is to prepare composites using nano ZnO. It has been undertaken to explore the potential of nano ZnO as reinforcement in engineering as well as commodity thermoplastics to widen their application spectra. We selected three engineering thermoplastics like [poly ethylene terephthalate, polyamide 6, and polycarbonate] and three commodity plastics like [polypropylene, high density polyethylene, and polystyrene] for the study. To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Modification of polymers could reduce impact performance. The present study also focused on whether nano ZnO can act as a modifier for thennoplastics, without sacrificing their impact strength.
Resumo:
The present study describes the preparation of Vinyl acetate-Butyl acrylate copolymer lattices of varying compositions and solid contents by semicontinuous emulsion polymerization method. This copolymer lattices were used as binder to develop a new surface coating formulation. The properties of this surface coating were improved by using nano TiO2 colloidal sol as a pigment. Antimicrobial activity of surface coatings was improved by the addition of carboxymethyl chitosan as biocide. Uniformly dispersed tyre crumb was used to give a mat finish to the coating. The mechanical properties adhesive properties, thermal properties etc. of the coatings are presented in thesis.