93 resultados para Nonlinear structures
Resumo:
We discuss how the presence of frustration brings about irregular behaviour in a pendulum with nonlinear dissipation. Here frustration arises owing to particular choice of the dissipation. A preliminary numerical analysis is presented which indicates the transition to chaos at low frequencies of the driving force.
Resumo:
The scattering behaviour of fractal based metallodielectric structures loaded over metallic targets of different shapes such as flat plate, cylinder and dihedral corner reflector are investigated for both TE and TM polarizations of the incident wave. Out of the various fractal structures studied,square Sierpinski carpet structure is found to give backscattering reduction for an appreciable range of frequencies. The frequency of minimum backscattering depends on the geometry of the structure as well as on the thickness of the substrate. This structure when loaded over a dihedral corner reflector is showing an enhancement in RCS for corner angles other than 90◦.
Resumo:
Effective use of fractal-based metallo-dielectric structures for enhancing the radar cross-section (RCS) of dihedral corner reflectors is reported. RCS enhancement of about 30 dBsm is obtained for corner reflectors with corner angles other than 90deg. This may find application in remote sensing and synthetic aperture radar.
Resumo:
In the present work,the chelating behaviour of thiosemicarbazones of a heterocyclic diketone, 2,6-diacetylpyridine is studied,with the aim of investigating the influence coordination exerts on their conformation and /or configuration, in connection with the nature of the metal and of the counter ion.The various possibilities like unsubstitution,ring incorporation at terminal nitrogen and condensation of one of the ketone group alone have been tried for ligand selection.Mainly first row transition metals like manganese,iron,nickel,copper,zinc and cadmium are studied.Metals like cobalt also were studied but could not result in fruitful isolation of the compound due to solubility problems.Different spectroscopic and characterization techniques have been utilized to reveal the nature of the metal and the ligands in coordinated metal complex.
Resumo:
Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Present thesis has discussed the design and synthesis of polymers suitable for nonlinear optics. Most of the molecules that were studied have shown good nonlinear optical activity. The second order nonlinear optical activity of the polymers was measured experimentally by Kurtz and Perry powder technique. The thesis comprises of eight chapters.The theory of NLO phenomenon and a review about the various nonlinear optical polymers has been discussed in chapter 1. The review has provided a survey of NLO active polymeric materials with a general introduction, which included the principles and the origin of nonlinear optics, and has given emphasis to polymeric materials for nonlinear optics, including guest-host systems, side chain polymers, main chain polymers, crosslinked polymers, chiral polymers etc.Chapter 2 has discussed the stability of the metal incorporated tetrapyrrole molecules, porphyrin, chlorin and bacteriochlorin.Chapter 3 has provided the NLO properties of certain organic molecules by computational tools. The chapter is divided into four parts. The first part has described the nonlinear optical properties of chromophore (D-n-A) and bichromophore (D-n-A-A-n-D) systems, which were separated by methylene spacer, by making use of DPT and semiempirical calculations.Chapter 4: A series of polyurethanes was prepared from cardanol, a renewable resource and a waste of the cashew industry by previously designed bifunctional and multifunctional polymers using quantum theoretical approach.Chapter 5: A series of chiral polyurethanes with main chain bis azo diol groups in the polymer backbone was designed and NLO activity was predicted by ZlNDO/ CV methods.In Chapter 7, polyurethanes were first designed by computational methods and the NLO properties were predicted by correction vector method. The designed bifunctional and multifunctional polyurethanes were synthesized by varying the chiral-achiral diol compositions
Resumo:
The unusual coordination modes of semicarbazones when bound to metals, the wide applications and structural diversity of metal complexes of semicarbazones provoked us to synthesize and characterize the tridentate ONO and NNO-donor semicarbazones and their transition metal complexes. This work is focused on the studies on complexes of three N4-phenylsemicarbazones synthesized by changing the carbonyl compounds. This work is concerned with the studies of two new semicarbazones, 2- formylpyridine-N4-phenylsemicarbazone (HL1) and 3-ethoxysalicylaldehyde- N4-phenylsemicarbazone (H2L2) and a reported semicarbazone 2-benzoylpyridine-N4-phenylsemicarbazone (HL3) [29]. The compositions of these semicarbazones were determined by the CHN analyses and IR, UV and NMR spectral studies were used for the characterization of these compounds. The molecular structure of 3-ethoxysalicylaldehyde-N4-phenylsemicarbazone (H2L2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Cu(II), Cd(II), Zn(II) and Ni(II) complexes of these three semicarbazones. The complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some complexes of all metals suitable for X-ray diffraction studies. This thesis is divided into six chapters.
Resumo:
The nonlinear dynamics of certain important reaction systems are discussed and analysed in this thesis. The interest in the theoretical and the experimental studies of chemical reactions showing oscillatory dynamics and associated properties is increasing very rapidly. An attempt is made to study some nonlinear phenomena exhibited by the well known chemical oscillator, the BelousovZhabotinskii reaction whose mathematical properties are much in common with the properties of biological oscillators. While extremely complex, this reaction is still much simpler than biological systems at least from the modelling point of view. A suitable model [19] for the system is analysed and the researcher has studied the limit cycle behaviour of the system, for different values of the stoichiometric parameter f, by keeping the value of the reaction rate (k6) fixed at k6 = l. The more complicated three-variable model is stiff in nature.
Resumo:
The discovery of the soliton is considered to be one of the most significant events of the twentieth century. The term soliton refers to special kinds of waves that can propagate undistorted over long distances and remain unaffected even after collision with each other. Solitons have been studied extensively in many fields of physics. In the context of optical fibers, solitons are not only of fundamental interest but also have potential applications in the field of optical fiber communications. This thesis is devoted to the theoretical study of soliton pulse propagation through single mode optical fibers.
Resumo:
Nonlinear optics has emerged as a new area of physics , following the development of various types of lasers. A number of advancements , both theoretical and experimental . have been made in the past two decades . by scientists al1 over the world. However , onl y few scientists have attempted to study the experimental aspects of nonlinear optical phenomena i n I ndian laboratories. This thesis is the report of an attempt made in this direction. The thesis contains the details of the several investigations which the author has carried out in the past few years, on optical phase conjugation (OPC) and continuous wave CCVD second harmonic generation CSHG). OPC is a new branch of nonlinear optics, developed only in the past decade. The author has done a few experiments on low power OPC in dye molecules held in solid matrices, by making use of a degenerate four wave mixing CDFWND scheme. These samples have been characterised by studies on their absorption-spectra. fluorescence spectra. triplet lifetimes and saturation intensities. Phase conjugation efficiencies with r espect to the various parameters have been i nvesti gated . DFWM scheme was also employed i n achievi ng phase conjugation of a br oadband laser C Nd: G1ass 3 using a dye solution as the nonlinear medium.
Resumo:
Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters
Resumo:
Usually typical dynamical systems are non integrable. But few systems of practical interest are integrable. The soliton concept is a sophisticated mathematical construct based on the integrability of a class ol' nonlinear differential equations. An important feature in the clevelopment. of the theory of solitons and of complete integrability has been the interplay between mathematics and physics. Every integrable system has a lo11g list of special properties that hold for integrable equations and only for them. Actually there is no specific definition for integrability that is suitable for all cases. .There exist several integrable partial clillerential equations( pdes) which can be derived using physically meaningful asymptotic teclmiques from a very large class of pdes. It has been established that many 110nlinear wa.ve equations have solutions of the soliton type and the theory of solitons has found applications in many areas of science. Among these, well-known equations are Korteweg de-Vries(KdV), modified KclV, Nonlinear Schr6dinger(NLS), sine Gordon(SG) etc..These are completely integrable systems. Since a small change in the governing nonlinear prle may cause the destruction of the integrability of the system, it is interesting to study the effect of small perturbations in these equations. This is the motivation of the present work.
Resumo:
Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular self—assernbly driven by weak interactions such as hydrogen— bonding, K '”T[, C-1-I‘ "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow nature’s strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogen—bond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.
Resumo:
Organic crystals possess extremely large optical nonlinearity compared to inorganic crystals. Also organic compounds have the amenability for synthesis and scope for introducing desirable characteristics by inclusions. A wide variety of organic materials having electron donor and acceptor groups, generate high order of nonlinearity. In the present work, a new nonlinear optical crystal, L-citrulline oxalate (LCO) based on the aminoacid L-citrulline was grown using slow evaporation technique. Structural characterization was carried out by single crystal XRD. It crystallizes in the noncentrosymmetric, orthorhombic structure with space group P21 P21 P21. Functional groups present in the sample were identified by Fourier transform infra red (FTIR) and FT-Raman spectral analysis. On studying the FTIR and Raman spectra of the precursors L-citrulline and oxalic acid, used for growing L-citrulline oxalate crystal, it is found that the significant peaks of the precursors are present in the spectra of the L-citrulline oxalate crystal . This observation along with the presence of NH3 + group in the spectra of L-citrulline oxalate, confirms the formation of the charge transfer complex