84 resultados para HIGH-DIELECTRIC-CONSTANT
Resumo:
A novel technique fitr the bat dividth enhancement of conventional rectangular microstrip antenna is proposed in this paper. When a high permittivity dielectric resonator of suitable resonant frequency was loaded over the patch. the % bandwidth of the antenna was increased by more than five tunes without much affecting its gain and radiation performance. A much more improved bandwidth was obtained when the dielectric resonator was placed on the feedline. Experimental study shows a 2:1 VSWR bandwidth of more than 10% and excellent cross polarization performance with increased pass band and radiation coverage abnost the same as that of rectangular microstrip antenna
Resumo:
very-high-permittivity (e, = 100) multiband dielectrice> e resonator antenna is presented. The compact antenna, excited by a m:'crostrip line, resonates at two frequencies centered around the 1.9- GHz and 2.4-GHz bands with identical polarization . The behavior of the antenna at different positions along the feed line is studied and optimized. Multiple resonances with the same polarization and broad radioticn patterns suggest the suitability of the antenna for multiband wireless application
Resumo:
The radiation characteristics of a microstrip-line-excited rectangular dielectric resonator antenna (DRA) are studied experimentally.The radiation charactristics and excitation of different modes are highly influenced by the orientation of the DR,feed line parameters ,and finite size of the ground plane
Resumo:
rectangular low-density, high-permittivity dielectric resona or antenna (DRA) excited by T-shaped microstrip feed offering a 2:1 VSWR bandwidth of -22% at 2.975 GHz is reported. The design methoaology and experimental results of the antenna are discussed. The excellent gain and radiation performance of the proposed antenna project: it as a potential candidate for telecommunication applications
Resumo:
The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.
Resumo:
The present work is an attempt to understand the characteristics of high energy ball milling on the structural, electrical and magnetic properties of some normal spinets in the ultra fine regime, Magnetism and magnetic materials have been a fascinating subject for the mankind ever since the discovery of lodestone. Since then, man has been applying this principle of magnetism to build devices for various applications. Magnetism can be classified broadly into five categories. They are diamagnetic, paramagnetic, ferromagnetic antiferromagnetic and ferrimagnetic. Of these, ferro and ferri magnetic materials assume great commercial importance due to their unique properties like appropriate magnetic characteristics, high resistivity and low eddy current losses. The emergence of nanoscience and nanotechnology during the last decade had its impact in the field of magnetism and magnetic materials too. Now, it is common knowledge that materials synthesized in the nanoregime exhibit novel and superlative properties with respect to their coarser sized counterparts in the micron regime. These studies reveal that dielectric properties can be varied appreciably by high-energy ball milling in nanosized zinc ferrites produced by coprecipitation method. A semi conducting behaviour was observed in these materials with the Oxygen vacancies acting as the main charge carrier for conduction, which was produced at the time of coprecipitation and milling. Thus through this study, it was possible to successfully investigate the finite size effects on the structural, electrical and magnetic properties of normal spinels in the ultra fine regime
Resumo:
The impedance bandwidth of a high permittivity cylindrical dielectric resonator antenna excited by a micro strip line was significantly improved by modifying the feed geometry. The 10 dB return loss bandwidth is enhanced from 12 to 26% without much affecting the gain and other radiation properties of the antenna. Good agreement has been observed between the predicted and measured results
Resumo:
A new configuration that employs a conducting conformal strip to excite the low-profile equilaterial-triangular dielectric resonator antenna (DRA) of very high permittivity is proposed. As compared with the previous aperture-coupling configuration, the new configuration has a wider impedance bandwidth (- 5.5%) and a higher front-to-back radiation ratio. The return loss, radiation patterns, and antenna gain are measured and discussed
Resumo:
A fairly rigorous analytical treatment of the power characteristics of dielectric optical waveguides with Piet Hein core-cross sectional geometry is presented in this paper. This kind of wareguide structure would be advantageous owing to the absence of corners, which are found in rectangular guides, resulting in undesirable loss (hit to the scattering of light. In order to simplify this theoretical approach. em approximation of vanishing refractive index difference between the guiding and the non-guiding sections is implemented. The variation eJ logarithmic power is shown for different dimensions of the core, corresponding to different azimuthal modal indices. It is found that the nutlet with higher index values carry less logaritlunic power in the lower tail of the propagation 's constant range, and this feature affects the higher tail. A better kind of uniformity of the power distribution is observed near the higher tail of the range of propagation Constants
Resumo:
A new group of compounds with composition (Ba5-xSrx) Nb4015, having high permittivity and low loss have been prepared and characterized in the microwave frequency region . X-ray diffraction studies showed that monophase compound existed for all values of x from 0 to 5. Microwave dielectric properties such as and c f showed smooth variation with x , while the unloaded quality factor (Qu) showed remarkable improvement with x
Resumo:
New dielectric ceramics with formula BaTi3Nb4, O„ and Ba6Til4Nbz039 have been prepared and characterized. BaTi3Nba017 was densified to 92% of TD after firing at 1310 oC for 4 h. However, Ba6Ti 1 4Nb2O39 fired under optimized conditions (1260 ` C for 4 h) showed only 85% TD together with secondary phase. The crystal system of both of the compositions is orthorhombic
Resumo:
A new microwave dielectric resonator Ba(Tb1/2Nb1/2)03 has been prepared and characterized in the microwave frequency region. 1 wt% CeO2 is used as additive to reduce the sintering temperature. The sintered samples were characterized by XRD, SEM and Raman spectroscopic methods. Microwave DR properties such as er, Q factor and temperature-coefficient of resonant frequency (Ti) have been measured using a HP 8510 B Network Analyzer. Cylindrical DRs of Ba(Tb1/2Nbi/2)03 showed high Er (~ 37), high Q (~3,200) and low Tf (~10 ppm /°C) at 4 GHz and hence are useful for practical applications
Resumo:
The BaO-2CeO2-nTiO2 ceramics with n = 3, 4 and 5 have been prepared with CeO2 as starting material . The ceramics have been characterized using scanning electron microscopy , X-ray diffraction , Raman and X-ray photoelectron spectroscopy techniques. The microwave dielectric properties have been measured using standard dielectric resonator techniques . BaO-2CeO2-3TiO2 (123), BaO-2CeO2-4TiO2 ( 124) and BaO-2CeO2-5TiO2 ( 125) ceramics showed dielectric constants of 38, 27 and 32, respectively . All the ceramics showed fairly good unloaded Q - factors . 124 and 125 compounds exhibited low tf values, while 123 showed a high rf value
Resumo:
The effect of glass additives on the densification , phase evolution, microstructure and microwave dielectric properties of Ba(Mg1;3 Ta2i3)03 (BMT) was investigated . Different weight percentages of quenched glass such as B203 , Si02, B203-SiO2, ZnO-B203, 5ZnO-2B2O3, Al203-SiO2, Na20-2B203.10H20, BaO-B203-SiO2, MgO-B203-SiO2, PbO-B203-SiO2 , ZnO-B203-SiO2 and 2MgO-Al203-5SiO2 were added to calcined BMT precursor . The sintering temperature of the glass -added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition . Addition of glass systems such as B203, ZnO-B203, 5ZnO-2B203 and ZnO-B203-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification . The microwave dielectric properties of undoped BMT with a densification of 93 . 1 % of the theoretical density were Cr = 24 . 8, Tr = 8 ppm/°C and Q„ x f= 80,000 GHz. The BMT doped with 1.0 wt% of B203 has Q„ x f = 124,700GHz, Cr = 24.2, and T f = -1.3 ppm /°C. The unloaded Q factor of 0.2 wt% ZnO-B203-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B203 added ceramic was Q„ x f= 141,800 GHz . The best microwave quality factor was observed for ZnO -B203-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q„ x f= 152,800 GHz, F,= 25.5, and Tr = - 1.5 ppm/°C
Resumo:
The impedance bandwidth of a high permittivity cylindrical dielectric resonator antenna excited by a micro strip line was significantly improved by modifying the feed geometry. The 10 dB return loss bandwidth is enhanced from 12 to 26% without much affecting the gain and other radiation properties of the antenna. Good agreement has been observed between the predicted and measured results