54 resultados para sensor array
Resumo:
Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.
Resumo:
Wireless sensor networks monitor their surrounding environment for the occurrence of some anticipated phenomenon. Most of the research related to sensor networks considers the static deployment of sensor nodes. Mobility of sensor node can be considered as an extra dimension of complexity, which poses interesting and challenging problems. Node mobility is a very important aspect in the design of effective routing algorithm for mobile wireless networks. In this work we intent to present the impact of different mobility models on the performance of the wireless sensor networks. Routing characteristics of various routing protocols for ad-hoc network were studied considering different mobility models. Performance metrics such as end-to-end delay, throughput and routing load were considered and their variations in the case of mobility models like Freeway, RPGM were studied. This work will be useful to figure out the characteristics of routing protocols depending on the mobility patterns of sensors
Resumo:
Sensor networks are one of the fastest growing areas in broadwireless ad hoc networking (?Eld. A sensor node, typically'contains signal-processing circuits, micro-controllers and awireless transmitter/receiver antenna. Energy saving is oneof the critical issue for sensor networks since most sensorsare equipped with non-rechargeable batteries that have limited lifetime.In thiswork, four routing protocols for wireless sensor networks vizFlooding, Gossiping, GBR and LEACH have been simulated using Tiny OS and their power consumption is studied usingcaorwreiredTOoSuStIuMs.ingAMirceaal2izMaotitoens.of these protocols has been carried out using mica 2 motes
Resumo:
This paper presents the design and analysis of a novel machine family—the enclosed-rotor Halbach-array permanentmagnet brushless dcmotors for spacecraft applications. The initial design, selection of major parameters, and air-gap magnetic flux density are estimated using the analytical model of the machine. The proportion of the Halbach array in the machine is optimized using finite element analysis to obtain a near-trapezoidal flux pattern. The machine is found to provide uniform air-gap flux density along the radius, thus avoiding circulating currents in stator conductors and thereby reducing torque ripple. Furthermore, the design is validated with experimental results on a fabricated machine and is found to suit the design requirements of critical spacecraft applications
Resumo:
The towed array electronics is essentially a multichannel real time data acquisition system. The major challenges involved in it are the simultaneous acquisition of data from multiple channels, telemetry of the data over tow cable (several kilometres in some systems) and synchronization with the onboard receiver for accurate reconstruction. A serial protocol is best suited to transmit the data to onboard electronics since number of wires inside the tow cable is limited. The best transmission medium for data over large distances is the optical fibre. In this a two step approach towards the realization of a reliable telemetry scheme for the sensor data using standard protocols is described. The two schemes are discussed in this paper. The first scheme is for conversion of parallel, time-multiplexed multi-sensor data to Ethernet. Existing towed arrays can be upgraded to ethernet using this scheme. Here the last lap of the transmission is by Ethernet over Fibre. For the next generation of towed arrays it is required to digitize and convert the data to ethernet close to the sensor. This is the second scheme. At the heart of this design is the Analog-to-Ethernet node. In addition to a more reliable interface, this helps in easier fault detection and firmware updates in the field for the towed arrays. The design challenges and considerations for incorporating a network of embedded devices within the array are highlighted
Resumo:
The Towed Array electronics is a multi-channel simultaneous real time high speed data acquisition system. Since its assembly is highly manpower intensive, the costs of arrays are prohibitive and therefore any attempt to reduce the manufacturing, assembly, testing and maintenance costs is a welcome proposition. The Network Based Towed Array is an innovative concept and its implementation has remarkably simplified the fabrication, assembly and testing and revolutionised the Towed Array scenario. The focus of this paper is to give a good insight into the Reliability aspects of Network Based Towed Array. A case study of the comparison between the conventional array and the network based towed array is also dealt with
Resumo:
A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR
Resumo:
A differential pulse voltammetric sensor for the determination of tamsulosin hydrochloride (TAM) using multiwalled carbon nanotubes (MWNTs)–Nafion-modified glassy carbon electrode (GCE) has been developed. MWNTs were dispersed in water with the help of Nafion and were used to modify the surface of GCE via solvent evaporation. At MWNT-modified electrode, TAM gave a well-defined oxidation peak at a potential of 1084 mV in 0.1 M acetate buffer solution of pH 5. Compared to the bare electrode, the peak current of TAM showed a marked increase and the peak potential showed a negative deviation. The determination conditions, such as the amount of MWNT–Nafion suspension, pH of the supporting electrolyte and scan rate, were optimised. Under optimum conditions, the oxidation peak current was proportional to the concentration of TAM in the range 1 × 1023 M–3 × 1027 M with a detection limit of 9.8 × 1028 M. The developed sensor showed good stability, selectivity and was successfully used for the determination of TAM in pharmaceutical formulations and urine samples