62 resultados para rare earth and transition metal solid-state lasers
Resumo:
Metallo-organic chemistry,incorporating the frontiers of both inorganic and organic chemical aspects,is a topic of utility concern.The first exploration of coordinated metal complexes dates back to the ninettenth century,during the days of Alfred Werner.Thereafter,inorganic chemistry witnessed a great outflow of coordination compounds,with unique structural characteristics and diverse applicatons.The diversity in structures exhibited by the coordination complexes of multidentate ligands have led to their usage as sensors,models for enzyme mimetic centers,medicines etc.The liganda chosen are of prime importance in determining the properties of coordination compounds.Schiff bases are compounds obtained by the condensation of an aidehyde or ketone with an amine.The chemical properties of Schiff bases and their complexes are widely explored in recent years owing to their pharmacological activity,their catalytic activities and so on.On the other hand pseudohalides like azide and thiocyanate are versatile candidates for the construction of dimeric or polymeric complexes having excellent properties and diverse applications.So a combination of the Schiff bases and the pseudohalogens for the synthesis of metal complexes can bring about interesting results.An attempt into this area is the besis of this Ph.D theis.
Resumo:
The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, Eu(Pc)2, and LaPc) doped in a copolymer matrix of poly(methyl methacrylate) and methyl-2-cyanoacrylate have been studied for the first time to our knowledge. The optical-limiting response is attributed to reverse saturable absorption due to excited-state absorption. The performance of LaPc in a copolymer host is studied at different linear transmissions. The laser damage thresholds of all the samples are also reported.
Resumo:
The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.
Resumo:
Coordination chemistry of pentadentate 2,6-diacetylpyridine bis(thiosemicarbazone) Schiff base ligands has been intensively studied due to the versatility of the molecular chain in order to obtain very different geometries as well as their broad therapeutic activity. Metal complexes of thiosemicarbazone with aldehydes and ketones have been widely reported. But there have been fewer reports on potential pentadentate bis(thiosemicarbazones) formed from 2,6-diacetylpyridine. Keeping these in view, we have synthesized four bis(thiosemicarbazone) systems with 2,6-diacetylpyridine. In the present work, the chelating behavior of bis(thiosemicarbazones) are studied, with the aim of investigating the influence of coordination exerts on their conformation and or configuration, in connection with the nature of the metal and of the counter ion. The selection of the 2,6-diacetylpyridine as the ketonic part was based on its capability to form polynuclear complexes with different coordination number. The doubled armed bis(thiosemicarbazones) can coordinate to a metal centre as dianionic ligand by losing its amide protons or it can coordinate as monoanionic ligand by losing its amide proton from one of the thiosemicarbazone moiety or it can also be coordinate as neutral ligand. Hence it is interesting to explore the coordinating capabilities of these ligands whether in neutral form or anionic form and to study the structural variations occurring in the ligands during complexation such as change in conformation.
Resumo:
Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.In the present study we have synthesized some new Mn(II),Co(II) and Cu(II) complexes of Schiff bases derived from 1,8-diaminonaphthalene.Even though we could not isolate theses Schiff bases (as they readily cyclise to form the perimidine compounds),we were able to characterize unequivacally the complexes synthesized from these compounds as complexes of Schiff Bases. We Synthesized three perimidine derivatives ,2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine,2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol and 4-(2,3-dihyro-1H-perimidin-2-yl)-2-methoxyphenol by the condensation of 1,8-diaminonaphthalene with quinoxaline-2-carboxaldehyde,2- hydroxy-3-methoxybenzaldehyde or 4-hydroxy-3-methoxybenzaldehyde respectively.Theses compounds were used as precursor ligands for the preparation of Schiff base complexes.The complexes were characterized by using elemental analysis ,conductance and magnetic susceptibility measuremets ,infrared and UV-Visible spectroscopy ,thermogravimetric analysis and EPR spectroscopy .We also encapsulated the complexes in zeolite Y matrix and these encapsulated complexes were also characterized. We have also tried theses complexes as catalysts in the oxidation of cyclohexanol and decomposition of hydrogen peroxide.
Resumo:
In the present work,the chelating behaviour of thiosemicarbazones of a heterocyclic diketone, 2,6-diacetylpyridine is studied,with the aim of investigating the influence coordination exerts on their conformation and /or configuration, in connection with the nature of the metal and of the counter ion.The various possibilities like unsubstitution,ring incorporation at terminal nitrogen and condensation of one of the ketone group alone have been tried for ligand selection.Mainly first row transition metals like manganese,iron,nickel,copper,zinc and cadmium are studied.Metals like cobalt also were studied but could not result in fruitful isolation of the compound due to solubility problems.Different spectroscopic and characterization techniques have been utilized to reveal the nature of the metal and the ligands in coordinated metal complex.
Resumo:
The thesis is an introduction to our attempts to evaluate the coordination behaviour of a few compounds of our interest. Semicarbazones and their metal complexes have been an active area of research during the past years because of the beneficial biological activities of these substances. Tridentate NNO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis and characterization are well desirable. Hence, we decided to develop a research program aimed at the synthesis and characterization of novel semicarbazones derived from 2-benzoylpyridine and 2-acetylpyridine and their transition metal complexes. In addition to various physicochemical methods of analysis, single crystal X—Ray diffraction studies were also used for the characterization of the complexes.
Resumo:
This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.
Resumo:
The thesis is an introduction to evaluate the coordination behaviour of a few compounds of our interest. The crucial aim of these investigations was to synthesize and characterize some transition metal complexes using the ligands benzaldehyde, 2-hydroxybenzaldehyde and 4-methoxybenzaldehyde N(4)-ring incorporated thiosemicarbazones.The study involves a brief foreword of the metal complexes of thiosemicarbazones including their bonding, stereochemistry and biological activities.The different analytical and spectroscopic techniques used for the analysis of the ligands and their complexes are discussed.It also deals with the synthesis and spectral characterization of the thiosemicarbazones and single crystal X-ray diffraction study of one of them.Chapter 3 describes the synthesis, spectral characterization, single crystal X-ray diffraction studies of copper(ll) complexes with ONS/NS donor thiosemicarbazones. Chapter 4 deals with the synthesis, spectral characterization and single crystal X-ray diffraction studies of nickel(II) complexes. Chapter 5 contains the synthesis, structural and spectral characterization of the cobalt(III) complexes. Chapters 6 and 7 include the synthesis, structural and spectral characterization of zinc(II) and cadmium(ll) complexes with ONS/NS donor thiosemicarbazones.
Resumo:
Chemistry occupies a unique middle position in the scientific arena, between physics and mathematics on the one side and biology, ecology, sociology and economics on the other [1]. Chemistry is the science of matter and of its transformations, and life is its highest expression [2]. According to reductionist thinking biology is reducible into chemistry, chemistry into physics, and ultimately physics into mathematics. Reductionism implies the ease of understanding one level in terms of another.The work presented this thesis comprises synthesis and characterization of suitably substituted thiocarbohydrazone and carbohydrazone ligand building blocks, self-assembled metallosupramolecular square grid complexes as well as some di/multinuclear complexes. The primary aim was the deliberate syntheses of some novel transition metal framework complexes, mainly metallosupramolecular coordination square grids by self-assembly and their physico-chemical characterization. The work presented, however, also include synthesis and characterization of four mononuclear Ni(II) complexes of two thiosemicarbazones, which we carried out as a preliminary and supporting study. Based on the present work we would like to conclude that the carbohydrazones, thiocarbohydrazones and their coordination framework complexes of transition metals are promising systems for wide application in science and technology varied from physics to biotechnology. Novel classes of materials and biologically important potential compounds open up further scope of researches and we hopefully welcome any sort of related research to make this work more valuable.
Resumo:
The unusual coordination modes of semicarbazones when bound to metals, the wide applications and structural diversity of metal complexes of semicarbazones provoked us to synthesize and characterize the tridentate ONO and NNO-donor semicarbazones and their transition metal complexes. This work is focused on the studies on complexes of three N4-phenylsemicarbazones synthesized by changing the carbonyl compounds. This work is concerned with the studies of two new semicarbazones, 2- formylpyridine-N4-phenylsemicarbazone (HL1) and 3-ethoxysalicylaldehyde- N4-phenylsemicarbazone (H2L2) and a reported semicarbazone 2-benzoylpyridine-N4-phenylsemicarbazone (HL3) [29]. The compositions of these semicarbazones were determined by the CHN analyses and IR, UV and NMR spectral studies were used for the characterization of these compounds. The molecular structure of 3-ethoxysalicylaldehyde-N4-phenylsemicarbazone (H2L2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Cu(II), Cd(II), Zn(II) and Ni(II) complexes of these three semicarbazones. The complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some complexes of all metals suitable for X-ray diffraction studies. This thesis is divided into six chapters.
Resumo:
Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies
Resumo:
Thiosemicarbazones have emerged as an important class of ligands over a period of time, for a variety of reasons, such as variable donor properties, structural diversity and biological applications. Interesting as the coordination chemistry may be, the driving force for the study of these ligands has undoubtedly been their biological properties and the majority of the 3000 or so publications on thiosemicarbazones since 2000 have alluded to this feature. Thiosemicarbazones with potential donor atoms in their structural skeleton fascinate coordination chemists with their versatile chelating behavior. The thiosemicarbazones of aromatic aldehydes and ketones form stable chelates with transition metal cations by utilizing both their sulfur and azomethine nitrogen as donor atoms. They have been shown to possess a diverse range of biological activities including anticancer, antitumor, antibacterial, antiviral, antimalarial and antifungal properties owing to their ability to diffuse through the semipermeable membrane of the cell lines. The enhanced effect may be attributed to the increased lipophilicity of the metal complexes compared to the ligand alone.
Resumo:
The work embodied in the thesis is divided into eight chapters. Chapter I gives a brief introduction about metal complexes of thiosemicarbazones, including their structural and bonding properties. Chapter 2 deals with the synthesis and single crystal X-ray diffraction studies of various thiosemicarbazones used up for the present investigations and various characterization techniques. Chapter 3 deals with synthesis, spectral and structural studies of Cu(U) complexes with ONS donor thiosemicarbazones. Chapter 4 deals with synthesis and spectral studies of Ni(II) complexes \vith 2-hydroxyacetophenone N(4)-cyclohexyl thiosemicarbazone as the ligand. Chapter 5 includes synthesis and spectral studies of Mn(II) complexes. Chapter 6 deals with synthesis, spectral and structural studies of Zn(II) complexes. Chapter 7 includes synthesis and spectral studies of oxovanadium(IV) complexes. Chapter 8 deals with synthesis, spectral and single crystal X-ray diffraction studies of dioxomolybdenum(VI) complexes.
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry