51 resultados para methylene blue sensitized poly(vinyl alcohol)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

in the present study, we have prepared and evaluated the physical and chemical properties and catalytic activities of transition metal loaded sulfated titania via the sol-gel route. Sol-gel method is widely used for preparing porous materials having controlled properties and leads to the formation of oxide particles in nano range, which are spherical or interconnected to each other. Characterization using various physico-chemical techniques and a detailed study of acidic properties are also carried out. Some reactions of industrial importance such as Friedel-Crafts reaction, fen-butylation of phenol,Beckmann rearrangement of cyclohexanone oxime, nitration of phenol and photochemical degradation of methylene blue have been selected for catalytic activity study in the present venture. The work is organized into eight chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal diffusivity (TD) measurements were performed on some industrially important dyes – auramine O (AO), malachite green and methylene blue (MB) – adsorbed K-10 montmorillonites using photoacoustic method. The TD value for the dye-adsorbed clay mineral was observed to change with a variation in dye concentration. The contribution of the dye towards TD was also determined. The repeatedly adsorbed samples with MB and AO exhibited a lower TD than the single-adsorbed samples. TD values of sintered MB samples were also obtained experimentally. These sintered samples exhibit a higher TD, although they show a trend similar to that of non-sintered pellets. A variation in dye concentration and sintering temperature can be used for tuning the TD value of the clay mineral to the desired level

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic-inorganic nanocomposites combine unique properties of both the constituents in one material. Among this group of materials, clay based as well as ZnO, TiO2 nanocomposites have been found to have diverse applications. Optoelectronic devices require polymerinorganic systems to meet certain desired properties. Dielectric properties of conventional polymers like poly(ethylene-co-vinyl acetate) (EVA) and polystyrene (PS) may also be tailor tuned with the incorporation of inorganic fillers in very small amounts. Electrical conductivity and surface resistivity of polymer matrices are found to improve with inorganic nanofillers. II-VI semiconductors and their nano materials have attracted material scientists because of their unique optical properties of photoluminescence, UV photodetection and light induced conductivity. Cadmium selenide (CdSe), zinc selenide (ZnSe) and zinc oxide (ZnO) are some of the most promising members of the IIVI semiconductor family, used in light-emitting diodes, nanosensors, non-linear optical (NLO) absorption etc. EVA and PS materials were selected as the matrices in the present study because they are commercially used polymers and have not been the subject of research for opto-electronic properties with semiconductor nanomaterials

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knoevenagel condensation between carbonyl compounds and active methylene compounds as well as three component Mannich reaction between aldehydes, ketones and amines proceeded smoothly in water with good to excellent yield and high selectivity in the presence of zero and first generation poly(amidoamine) (PAMAM) dendrimers. The products and the catalyst were separated by simple biphasic extraction. The catalyst was found to be reusable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light emitting polymers (LEPs) are considered as the second generation of conducting polymers. A Prototype LEP device based on electroluminescence emission of poly(p-phenylenevinylene) (PPV) was first assembled in 1990. LEPs have progressed tremendously over the past 20 years. The development of new LEP derivatives are important because polymer light emitting diodes (PLEDs) can be used for the manufacture of next-generation displays and other optoelectronic applications such as lasers, photovoltaic cells and sensors. Under this circumstance, it is important to understand thermal, structural, morphological, electrochemical and photophysical characteristics of luminescent polymers. In this thesis the author synthesizes a series of light emitting polymers that can emit three primary colors (RGB) with high efficiency