50 resultados para chloride environment
Resumo:
This paper studies the use of E•rescurces by the faculty and research scholars of Cochin University of Science and TechnologytI'he: use of E resources under INDEST.consortinm;_UGC.lnfonet :project,.and the databases.subscribed.to.in theCUSAT Library are.studied.in the.survey, The:survey•covers various aspects jike.awareness-of the .users, user satisfaction, use pattem of Eoresources,preferenee.for print or electronic version.etc. The problems-faced-are stressed :and possible solutions are suggested
Resumo:
Heavy metals in the surface sediments of the two coastal ecosystems of Cochin, southwest India were assessed. The study intends to evaluate the degree of anthropogenic influence on heavy metal concentration in the sediments of the mangrove and adjacent estuarine stations using enrichment factor and geoaccumulation index. The inverse relationship of Cd and Zn with texture in the mangrove sediments suggested the anthropogenic enrichment of these metals in the mangrove systems. In the estuarine sediments, the absence of any significant correlation of the heavy metals with other sedimentary parameters and their strong interdependence revealed the possibility that the input is not through the natural weathering processes. The analysis of enrichment factor indicated a minor enrichment for Pb and Zn in mangrove sediments. While, extremely severe enrichment for Cd, moderate enrichment for Zn and minor enrichment of Pb were observed in estuarine system. The geo accumulation index exhibited very low values for all metals except Zn, indicating the sediments of the mangrove ecosystem are unpolluted to moderately polluted by anthropogenic activities. However, very strongly polluted condition for Cd and a moderately polluted condition for Zn were evident in estuarine sediments
Resumo:
In the past, natural resources were plentiful and people were scarce. But the situation is rapidly reversing. Our challenge is to find a way to balance human consumption and nature’s limited productivity in order to ensure that our communities are sustainable locally, regionally and globally. Kochi, the commercial capital of Kerala, South India and the second most important city next to Mumbai on the Western coast is a land having a wide variety of residential environments. Due to rapid population growth, changing lifestyles, food habits and living standards, institutional weaknesses, improper choice of technology and public apathy, the present pattern of the city can be classified as that of haphazard growth with typical problems characteristics of unplanned urban development. Ecological Footprint Analysis (EFA) is physical accounting method, developed by William Rees and M. Wackernagel, focusing on land appropriation using land as its “currency”. It provides a means for measuring and communicating human induced environmental impacts upon the planet. The aim of applying EFA to Kochi city is to quantify the consumption and waste generation of a population and to compare it with the existing biocapacity. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. In this paper, an attempt is made to explore the tool Ecological Footprint Analysis and calculate and analyse the ecological footprint of the residential areas of Kochi city. The paper also discusses and analyses the waste footprint of the city. An attempt is also made to suggest strategies to reduce the footprint thereby making the city sustainable
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product
Resumo:
In many situations probability models are more realistic than deterministic models. Several phenomena occurring in physics are studied as random phenomena changing with time and space. Stochastic processes originated from the needs of physicists.Let X(t) be a random variable where t is a parameter assuming values from the set T. Then the collection of random variables {X(t), t ∈ T} is called a stochastic process. We denote the state of the process at time t by X(t) and the collection of all possible values X(t) can assume, is called state space