52 resultados para Wall materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important part of any footwear is the sole (or sole and heel) which withstands all the hannful external factors such as rouglmess of the ground or road, sharp objects, thorns and stones, heat, dampness and cold during walking. The properties desirable in soling material, therefore, would be 1. lightness 2. resistance to wear and tear for long service life 3. flexibility/softness for wearing comfort 4. thennal insulation Rubber soling surpasses all other soling materials in better performance and lower cost. Because MC sole is soft and very light, and has good abrasion resistance, flex properties and set behaviour it has become very popular all over the world and demand for better quality product is ever increasing. Due to the traditional approach adopted by the footwear industry in foot wear design, the rubber based footwear export surprisingly contributes only a small percentage. The essence of success for any industry lies in the expansion of the export market. Microcellular soles are manufactured for the last three decades without much change in the traditional design and colour pattern. In recent years domestic customers have also started demanding better quality products. In view of the changing taste of the customer and growing competition from other countries, substantial improvement in the export potential will require new base materials for regular or fashion rubber based footwears. The main objective of the present study is to develop new base materials for making MC soles with good quality, viz., light weight, durability and bright colours

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan has beenwidely accepted as awall material for preparing microcapsules of various purposes in human medicine. The possibility of using chitosan as a wall material for microencapsulating nutrients and drugs for aquaculture purposes, speci¢cally to Macrobrachium rosenbergii larvae was evaluated in this study. Two types of chitosan-coated microcapsules were prepared using either acetone (MEC-A) or NaOH (MEC-N) as the cross-linking agents. They were compared with a microbound diet relative to total leaching of nutrients and free amino acids (FAA). Among the microcapsules, MEC-N showed the lowest level of total leaching of nutrients (23.3%) during 5 h of immersion in seawater and released 65% FAA after 60min. During laboratory trials,75% larvae had accepted the MEC-N capsule. The results of the study suggest that chitosan can be used as a wall material for preparing microcapsules to deliver drugs and nutrients to M. rosenbergii larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kerala, God’s own country is blessed with immense natural resources. It’s high time that the state’s natural resources being utilized effectively. While sustainable development is the need of the hour, we have to take lead in initiating activities that would minimize the exploitation of our natural resources resulting in their effective utilization. This paper narrates an overview of innovative building materials especially using natural fibres available in Kerala and discusses the feasibility of utilising such fibres in the context of sustainable building materials in Kerala. The paper also discusses how these materials can be effectively utilized to reduce the huge investment in the construction industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Study overviews the basics of TiO2with respect to its structure, properties and applications. A brief account of its structural, electronic and optical properties is provided. Various emerging technological applications utilising TiO2 is also discussed.Till now, exceptionally large number of fundamental studies and application-oriented research and developments has been carried out by many researchers worldwide in TiO2 with its low-dimensional nanomaterial form due to its various novel properties. These nanostructured materials have shown many favourable properties for potential applications, including pollutant photocatalytic decomposition, photovoltaic cells, sensors and so on. This thesis aims to make an in-depth investigation on different linear and nonlinear optical and structural characteristics of different phases of TiO2. Correspondingly, extensive challenges to synthesise different high quality TiO2 nanostructure derivatives such as nanotubes, nanospheres, nanoflowers etc. are continuing. Here, different nanostructures of anatase TiO2 were synthesised and analysed. Morphologically different nanostructures were found to have different impact on their physical and electronic properties such as varied surface area, dissimilar quantum confinement and hence diverged suitability for different applications. In view of the advantages of TiO2, it can act as an excellent matrix for nanoparticle composite films. These composite films may lead to several advantageous functional optical characteristics. Detailed investigations of these kinds of nanocomposites were also performed, only to find that these nanocomposites showed higher adeptness than their parent material. Fine tuning of these parameters helps researchers to achieve high proficiency in their respective applications. These innumerable opportunities aims to encompass the new progress in studies related to TiO2 for an efficient utilization in photo-catalytic or photo-voltaic applications under visible light, accentuate the future trends of TiO2-research in the environment as well as energy related fields serving promising applications benefitting the mankind. The last section of the thesis discusses the applicability of analysed nanomaterials for dye sensitised solar cells followed by future suggestions.