49 resultados para Unbound granular materials
Resumo:
Kerala, God’s own country is blessed with immense natural resources. It’s high time that the state’s natural resources being utilized effectively. While sustainable development is the need of the hour, we have to take lead in initiating activities that would minimize the exploitation of our natural resources resulting in their effective utilization. This paper narrates an overview of innovative building materials especially using natural fibres available in Kerala and discusses the feasibility of utilising such fibres in the context of sustainable building materials in Kerala. The paper also discusses how these materials can be effectively utilized to reduce the huge investment in the construction industry
Resumo:
The 20th century witnessed the extensive use of microwaves in industrial, scientific and medical fields. The major hindrance to many developments in the ISM field is the lack of knowledge about the effect of microwaves on materials used in various applications. The study of the interaction of microwaves with materials demanded the knowledge of the dielectric properties of these materials. However, the dielectric properties of many of these materials are still unknown or less studied. This thesis is an effort to shed light into the dielectric properties of some materials which are used in medical, scientific and industrial fields. Microwave phantoms are those materials used in microwave simulation applications. Effort has been taken to develop and characterize low cost, eco-friendly phantoms from Biomaterials and Bioceramics. The interaction of microwaves with living tissues paved way to the development of materials for electromagnetic shielding. Materials with good conductivity/absorption properties could be used for EMI shielding applications. Conducting polymer materials are developed and characterized in this context. The materials which are developed and analyzed in this thesis are Biomaterials, Bioceramics and Conducting polymers. The use of materials of biological origin in scientific and medical applications provides an eco-friendly pathway. The microwave characterization of the materials were done using cavity material perturbation method. Low cost and ecofriendly biomaterial films were developed from Arrowroot and Chitosan. The developed films could be used in applications such as microwave phantom material, capsule material in pharmaceutical applications, trans-dermal patch material and eco-friendly Band-Aids. Bioceramics with better bioresorption and biocompatibility were synthesized. Bioceramics such as Hydroxyapatite, Beta tricalcium phosphate and Biphasic Calcium Phosphate were studied. The prepared bioceramics could be used as phantom material representing Collagen, Bone marrow, Human abdominal wall fat and Human chest fat. Conducting polymers- based on Polyaniline, are developed and characterized. The developed materials can be used in electromagnetic shielding applications such as in anechoic chambers, transmission cables etc
Resumo:
The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.
Resumo:
This Study overviews the basics of TiO2with respect to its structure, properties and applications. A brief account of its structural, electronic and optical properties is provided. Various emerging technological applications utilising TiO2 is also discussed.Till now, exceptionally large number of fundamental studies and application-oriented research and developments has been carried out by many researchers worldwide in TiO2 with its low-dimensional nanomaterial form due to its various novel properties. These nanostructured materials have shown many favourable properties for potential applications, including pollutant photocatalytic decomposition, photovoltaic cells, sensors and so on. This thesis aims to make an in-depth investigation on different linear and nonlinear optical and structural characteristics of different phases of TiO2. Correspondingly, extensive challenges to synthesise different high quality TiO2 nanostructure derivatives such as nanotubes, nanospheres, nanoflowers etc. are continuing. Here, different nanostructures of anatase TiO2 were synthesised and analysed. Morphologically different nanostructures were found to have different impact on their physical and electronic properties such as varied surface area, dissimilar quantum confinement and hence diverged suitability for different applications. In view of the advantages of TiO2, it can act as an excellent matrix for nanoparticle composite films. These composite films may lead to several advantageous functional optical characteristics. Detailed investigations of these kinds of nanocomposites were also performed, only to find that these nanocomposites showed higher adeptness than their parent material. Fine tuning of these parameters helps researchers to achieve high proficiency in their respective applications. These innumerable opportunities aims to encompass the new progress in studies related to TiO2 for an efficient utilization in photo-catalytic or photo-voltaic applications under visible light, accentuate the future trends of TiO2-research in the environment as well as energy related fields serving promising applications benefitting the mankind. The last section of the thesis discusses the applicability of analysed nanomaterials for dye sensitised solar cells followed by future suggestions.