59 resultados para Poly(methyl methacrylate) resins
Resumo:
Vibrational overtone spectra of acetophenone and benzaldehyde in the visible and near-infrared regions are studied by the dual beam thermal lens and the conventional near-infrared absorption techniques. The observed increase in the mechanical frequency of the aryl CH bond from that of benzene is attributed to the decrease in the aryl CH bond length caused by the electron-withdrawing property of the substituents. Overtone spectra also demonstrate that acetophenone contains two types of methyl CH bonds arising from the anisotropic environments created by oxygen lone pair and carbonyl P electrons. The local-mode parameters of the two types of CH bonds are compared with those of acetone and acetaldehyde. The possible factors influencing the methyl CH bonds in acetophenone are discussed.
Resumo:
Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.
Resumo:
The nanosecond optical limiting characteristics of sandwich-type neodymium diphthalocyanine in a co-polymer matrix of polymethyl methacrylate (PMMA) and methyl-2-cyanoacrylate have been studied for the first time. The measurements were performed using 9 ns laser pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The optical limiting performance of neodymium diphthalocyanine in co-polymer host was studied at different linear transmission. Laser damage threshold was also measured for the doped and undoped co-polymer samples. The optical limiting response is attributed to reverse saturable absorption which is due to excited-state absorption.
Resumo:
A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
Dept.of Polymer Science and Rubber Technology,Cochin University of Science and Technology
Resumo:
Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However. the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.
Resumo:
Pyocyanin is a versatile and multifunctional phenazine, widely used as a bio-control agent. Besides its toxicity in higher concentration, it has been applied as bio-control agents against many pathogens including the Vibrio spp. in aquaculture systems. The exact mechanism of the production of pyocyanin in Pseudomonas aeruginosa is well known, but the genetic modification of pyocyanin biosynthetic pathways in P. aeruginosa is not yet experimented to improve the yield of pyocyanin production. In this context, one of the aims of this work was to improve the yield of pyocyanin production in P. aeruginosa by way of increasing the copy number of pyocyanin pathway genes and their over expression. The specific aims of this work encompasses firstly, the identification of probiotic effect of P. aeruginosa isolated from various ecological niches, the overexpression of pyocyanin biosynthetic genes, development of an appropriate downstream process for large scale production of pyocyanin and its application in aquaculture industries. In addition, this work intends to examine the toxicity of pyocyanin on various developmental stages of tiger shrimp (Penaeus monodon), Artemia nauplii, microbial consortia of nitrifying bioreactors (Packed Bed Bioreactor, PBBR and Stringed Bed Suspended Bioreactor, SBSBR) and in vitro cell culture systems from invertebrates and vertebrates. The present study was undertaken with a vision to manage the pathogenic vibrios in aquaculture through eco-friendly and sustainable management strategies with the following objectives: Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture.,Saline dependent production of pyocyanin in Pseudomonas aeruginosa originated from different ecological niches and their selective application in aquaculture,Cloning and overexpression of Phz genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in Pseudomonas aeruginosa MCCB117,Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compoundToxicity of pyocyanin on various biological systems.
Resumo:
Ion-exchange chromatography has emerged as a practical and rapid method of separation and analysis. A review of literature on chelating resins reveals that eventhough investigations on highly selective resins are intensively pursued from early 1940s, such resins are still insufficiently used in analytical chemistry and process technology. This is mainly due to the complexity of their synthesis and high cost. In this context, it is worthwhile to develop novel chelating resins which are specific or at least selective towards a group of metal ions. Synthesis, characterization and analytical applications of two such resins are presented in this thesis.
Resumo:
Poly(amidoamine) dendrimers were synthesized on cross-linked aminomethyl polystyrene. Palladium complexes of supported dendrimers prepared by ligand exchange method were reduced to dendrimernanoparticle conjugates supported on polystyrene resin. The supported nanoparticles were used as heterogeneous catalysts for the Suzuki coupling between aryl boronic acids and aryl halides. Various factors affecting the catalysts performance were studied. Higher generation dendrimers gave well-defined nanoparticles without agglomeration and these particles showed good catalytic performance
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
Prodigiosin is known for its immunomodulatory, antibacterial, antimycotic, antimalarial, algicidal and anticancer activities. Here, we reported the evaluation of prodigiosin pigment as a dyeing agent in rubber latex, paper and polymethyl methacrylate (PMMA) so that it can be considered as an alternative to synthetic pigments. Maximum color shade was obtained in rubber sheet prepared with 0.5 parts per hundred gram of rubber (phr) pigment and PMMA sheet incorporated with 0.08 μg pigment. Results indicate scope for utilization of prodigiosin as dye for PMMA and rubber and also prodigiosin dyed paper as a pH indicator. Further, being a natural and water insoluble pigment, it is ecofriendly
Resumo:
An investigation on the panchromaticity of a silver-doped poly(vinyl alcohol)/acrylamide photopolymer system is presented in this paper. Frequency-doubled Nd:YAG (532 nm) and Arþ (488 nm) lasers were used for the characterization of the films. Previous studies using an He–Ne laser (632:8 nm) showed that plane-wave transmission grating with a high diffraction efficiency of 75% could be stored in the optimized film. From the present study, it was noted that transmission gratings with 70% diffraction efficiency could be recorded using Arþ and Nd:YAG lasers, thereby elucidating the possibility of using the developed photopolymer system as a competent panchromatic recording medium
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product
Resumo:
Modifications of DGEBA Using Epoxidised Resins