57 resultados para Nylon fiber
Resumo:
Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region (60 nm), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm, 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.
Resumo:
Preparation of an appropriate optical-fiber preform is vital for the fabrication of graded-index polymer optical fibers (GIPOF), which are considered to be a good choice for providing inexpensive high bandwidth data links, for local area networks and telecommunication applications. Recent development of the interfacial gel polymerization technique has caused a dramatic reduction in the total attenuation in GIPOF, and this is one of the potential methods to prepare fiber preforms for the fabrication of dye-doped polymer-fiber amplifiers. In this paper, the preparation of a dye-doped graded-index poly(methyl methacrylate) (PMMA) rod by the interfacial gel polymerization method using a PMMA tube is reported. An organic compound of high-refractive index, viz., diphenyl phthalate (DPP), was used to obtain a graded-index distribution, and Rhodamine B (Rh B), was used to dope the PMMA rod. The refractive index profile of the rod was measured using an interferometric technique and the index exponent was estimated. The single pass gain of the rod was measured at a pump wavelength of 532 nm. The extent of doping of the Rh B in the preform was studied by axially exciting a thin slice of the rod with white light and measuring the spatial variation of the fluorescence intensity across the sample.
Resumo:
A comparative study of two biopolymer based fiber optic humidity sensors is presented in this paper. Sensing elements Agarose and Chitosan swells in the presence of water vapour and undergoes changes in refractive index and modulates the intensity of light propagating through a fiber with Agarose or Chitosan as cladding.
Resumo:
The design and development of a cost-effective, simple, sensitive and portable LED based fiber optic evanescent wave sensor for simultaneously detecting trace amounts of chromium and nitrite in water are presented. In order to obtain the desired performance, the middle portions of two multimode plastic clad silica fibers are unclad and are used as the sensing elements in the two arms of the sensor. Each of the sensor arms is sourced by separate super bright green LEDs, which are modulated in a time-sharing manner and a single photo detector is employed for detecting these light signals. The performance and characteristics of this system clearly establish the usefulness of the technique for detecting very low concentrations of the dissolved contaminants.
Resumo:
A simple fiber optic concentration sensor based on the coupling of light f rom one fiber to another through a solution is discussed. The operational characteristics of the sensor are illustrated by taking the solutions of potassium permanganate and fast green dye as samples.The extrinsic type sensor described here shows linearity at lower concentrations.
Resumo:
PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria
Resumo:
The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.
Resumo:
The work presented in this thesis is regarding the development and evaluation of new bonding agents for short polyester fiber - polyurethane elastomer composites. The conventional bonding system based on hexamethylenetetramine, resorcinol and hydrated silica was not effective as a bonding agent for the composite, as the water eliminated during the formation of the RF resin hydrolysed the urethane linkages. Four bonding agents based on MDI/'I‘DI and polypropyleneglycol, propyleneglycol and glycerol were prepared and the composite recipe was optimised with respect to the cure characteristics and mechanical properties. The flow properties, stress relaxation pattern and the thermal degradation characteristics of the composites containing different bonding agents were then studied in detail to evaluate the new bonding systems. The optimum loading of resin was 5 phr and the ratio of the -01 to isocyanate was 1:1. The cure characteristics showed that the optimum combination of cure rate and processability was given by the composite with the resin based on polypropyleneglycol/ glycerol/ 4,4’diphenylmethanediisocynate (PPG/GL/MDI). From the rheological studies of the composites with and without bonding agents it was observed that all the composites showed pseudoplastic nature and the activation energy of flow of the composite was not altered by the presence of bonding agents. Mechanical properties such as tensile strength, modulus, tear resistance and abrasion resistance were improved in the presence of bonding agents and the effect was more pronounced in the case of abrasion resistance. The composites based on MDI/GL showed better initial properties while composites with resins based on MDI/PPG showed better aging resistance. Stress relaxation showed a multistage relaxation behaviour for the composite. Within the-strain levels studied, the initial rate of relaxation was higher and the cross over time was lesser for the composite containing bonding agents. The bonding agent based on MDI/PPG/GL was found to be a better choice for improving stress relaxation characteristics with better interfacial bonding. Thennogravimetirc analysis showed that the presence of fiber and bonding agents improved the thennal stability of the polyurethane elastomer marginally and it was maximum in the case of MDI / GL based bonding agents. The kinetics of degradation was not altered by the presence of bonding agents
Resumo:
Ferrite composites are magnetic composites consisting of fine particles of metal ferrites dispersed in the polymer matrix. These composites have a variety of applications as flexible magnets, pressure/photo sensors and microwave absorbers. Polymers and magnetic materials play a very important role in our day to day life. Both natural and synthetic polymers are today indispensable to mankind. The polymers, which include rubber, plastics and fibers, make life easier and more comfortable.
Resumo:
This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compressive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson’s ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa , moderately high strength 65 MPa , and high-strength concrete 85 MPa , and the volume fraction of the fiber Vf =0.0, 0.5, 1.0, and 1.5% . The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures
Resumo:
Cochin University of Science and Technology
Resumo:
International School of Photonics