54 resultados para Nickel Compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central theme of this research concerns the study of vibrationally excited molecules. We have used the local mode description of such vibrational states, and this -model has now gained general acceptance. A central feature of the model is the Wloealizafion of vibrational energy. A study of these high—energy localized states provides example, becauseof this localization, overtone spectra, which measure the absorption of T vibrational energy, are extremely sensitive to the properties of X-H bonds. We also use -overtone spectra to study the conformation of molecules, i.e., the relative internal orientation of their bonds. The thesis comprises six chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanowires (NWs) are ideal materials for the fabrication of various multifunctional nanostructures which can be manipulated by an external magnetic fi eld. Highly crystalline and textured nanowires of nickel (Ni NWs) and cobalt (Co NWs) with high aspect ratio (~330) and high coercivity have been synthesized by electrodeposition using nickel sulphate hexahydrate (NiSO4·6H2O) and cobalt sulphate heptahydrate (CoSO4·7H2O) respectively on nanoporous alumina membranes. They exhibit a preferential growth along〈110〉. A general mobility assisted growth mechanism for the formation of Ni and Co NWs is proposed. The role of the hydration layer on the resulting one-dimensional geometry in the case of potentiostatic electrodeposition is verified. A very high interwire interaction resulting from magnetostatic dipolar interactions between the nanowires is observed. An unusual low-temperature magnetisation switching for fi eld parallel to the wire axis is evident from the peculiar high fi eld M(T) curve

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni) electrodeposited inside Cobalt (Co) nanotubes (a new system named Ni @ Co nanorods) were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of *15 lm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel–rubber nanocomposites were synthesized by incorporating ferromagnetic nickel nanoparticles in a natural rubber as well as neoprene rubber matrix. Complex dielectric permittivity and magnetic permeability of these composites were evaluated in the X-band microwave frequencies at room temperature using cavity perturbation technique. The dielectric loss in natural rubber is smaller compared to neoprene rubber. A steady increase in the dielectric permittivity is observed with increase in the content of nickel in both the composites. The magnetic permeability exhibits a steady decrease with increase in frequency and magnetic loss shows a relaxation at 8 GHz. The suitability of these composites as microwave absorbers is modeled based on the reflection loss which is dependant on the real and imaginary components of the complex dielectric permittivity and magnetic permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra fine nickel ferrite have been synthesized by the sol-gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano-sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X-ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs