65 resultados para Damage tolerance, composites, VCCT, CZM
Resumo:
In the present study, nano particles of NiFe3O4, I_.l()5Feg5O4 and CoFegO4 are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFe3O4 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X — band are also conducted
Resumo:
Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
The effect of frequency, composition and temperature on the a.c. electrical conductivity were studied for the ceramic, Ni1–xZnxFe2O4, as well as the filler (Ni1–xZnxFe2O4) incorporated rubber ferrite composites (RFCs). Ni1–xZnxFe2O4 (where x varies from 0 to 1 in steps of 0×2) were prepared by usual ceramic techniques. They were then incorporated into a butyl rubber matrix according to a specific recipe. The a.c. electrical conductivity (sa.c.) calculations were carried out by using the data available from dielectric measurements and by employing a simple relationship. The a.c. conductivity values were found to be of the order of 10–3 S/m. Analysis of the results shows that sa.c. increases with increase of frequency and the change is same for both ceramic Ni1–xZnxFe2O4 and RFCs. sa.c. increases initially with the increase of zinc content and then decreases with increase of zinc. Same behaviour is observed for RFCs too. The dependence of sa.c. on the volume fraction of the magnetic filler was also studied and it was found that the a.c. conductivity of RFCs increases with increase of volume fraction of the magnetic filler. Temperature dependence of conductivity was studied for both ceramic and rubber ferrite composites. Conductivity shows a linear dependence with temperature in the case of ceramic samples
Resumo:
Polycrystalline single phasic mixed ferrites belonging to the series Ni1−xZnxFe2O4 for various values of x have been prepared by conventional ceramic techniques. Pre-characterized nickel zinc ferrites were then incorporated into a natural rubber matrix according to a specific recipe for various loadings. The processability and cure parameters were then determined. The magnetic properties of the ceramic filler as well as the ferrite loaded rubber ferrite composites (RFC) were evaluated and compared. A general equation for predicting the magnetic properties was also formulated. The validity of these equations were then checked and correlated with the experimental data. The coercivity of the RFCs almost resemble that of the ceramic component in the RFC. Percolation threshold is not reached for a maximum loading of 120 phr (parts per hundred rubber by weight) of the filler. These studies indicate that flexible magnets can be made with appropriate magnetic properties namely saturation magnetisation (Ms) and magnetic field strength (Hc) by a judicious choice of x and a corresponding loading. These studies also suggest that there is no possible interaction between the filler and the matrix at least at the macroscopic level. The formulated equation will aid in synthesizing RFCs with predetermined magnetic
Resumo:
Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties
Resumo:
Fine particles of barium ferrite (BaFe12O19) were synthesized by the conventional ceramic technique. These materials were then characterized by the X-ray diffraction method and incorporated in the natural rubber matrix according to a specific receipe for various loadings of ferrite. The rubber ferrite composites (RFC) thus obtained have several applications, and have the advantage of molding into complex shapes. For applications such as microwave absorbers, these composites should have an appropriate dielectric strength with the required mechanical and magnetic properties. The N330 (HAF) carbon black has been added to these RFCs for various loadings to modify the dielectric and mechanical properties. In this article we report the effect of carbon black on the mechanical and dielectric properties of these RFCs. Both the mechanical and dielectric properties can be enhanced by the addition of an appropriate amount of carbon black
Resumo:
Polyaniline and oligomeric cobalt phthalocyanine are blended in different proportions by chemical methods. These blends are characterised by spectroscopic methods and dielectric measurements. Dielectric studies on the conducting polymer blends are carried out in the frequency range of 100 kHz to 5MHz from room temperature (300 K) to 373 K. Dielectric permittivity and dielectric loss of these blends are explained on the basis of interfacial polarisation. From the dielectric permittivity studies, ac conductivity of the samples were calculated and the results are correlated. In order to understand the exact conduction mechanism of the samples, dc electrical conductivity of the blends is carried out in the temperature range of 70–300 K. By applying Mott’s theory, it is found that the conducting polymer composites obey a 3D variable range hopping mechanism. The values of Mott’s temperature (T0), density of states at the Fermi energy (N(EF)), range of hopping (R) and hopping energy (W) for the composites are calculated and presented
Resumo:
Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modi es the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 – x )Znx Fe2O4 have been synthesised with diVerent values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystallineMn(1 – x )Znx Fe2O4 ceramics into a natural rubber matrix at diVerent loadings according to a speci c recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic llers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the ller without changing the coercive eld. The hardness of these composites shows a steady increase with the loading of the magnetic llers. The evaluation of hardness andmagnetic characteristics indicates that composites with optimummagnetisation and almost minimum stiVness can be achieved with a maximum loading of 120 phr of the ller at x=0·4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the ller was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties
Resumo:
Rubber ferrite composites (RFCs) containing powdered nickel zinc ferrite (Ni1 – xZnxFe2O4 ) in a natural rubber matrix have been prepared and their mechanical and dielectric properties have been evaluated. Variations in the relative permittivity of both the ferrite ceramics and RFCs have been studied over a range of frequencies, ceramic compositions, ceramic ller loadings, and temperatures, and the results have been correlated. Appropriate mixture equations have been formulated to calculate the dielectric permittivity of the composite from the dielectric permittivity of its constituents. Values calculated using these equations have been compared with experimental data on relative permittivity, and the two have been found to be in good agreement. In the present investigationit was also observed that for x=0·4 and for the maximum ferrite loading, the composite sample exhibits maximum magnetisation and optimum exibility
Resumo:
Nickel–rubber nanocomposites were synthesized by incorporating ferromagnetic nickel nanoparticles in a natural rubber as well as neoprene rubber matrix. Complex dielectric permittivity and magnetic permeability of these composites were evaluated in the X-band microwave frequencies at room temperature using cavity perturbation technique. The dielectric loss in natural rubber is smaller compared to neoprene rubber. A steady increase in the dielectric permittivity is observed with increase in the content of nickel in both the composites. The magnetic permeability exhibits a steady decrease with increase in frequency and magnetic loss shows a relaxation at 8 GHz. The suitability of these composites as microwave absorbers is modeled based on the reflection loss which is dependant on the real and imaginary components of the complex dielectric permittivity and magnetic permeability.
Resumo:
Rubber ferrite composites (RFC) are magnetic polymer composites and have a variety of applications as flexible magnets, pressure=photo sensors, and microwave absorbers. The mouldability into complex shapes is one of the advantages of these magnetic elastomers. They have the potential of replacing the conventional ceramic materials, due to theire flexible nature. In the present study, the incorporation of pre-characterized hexagonal ferrites, namely barium ferrite (BaFe12O19), into natural rubber matrix is carried out according to a suitable recipe for various loadings of the filler. The processability of these compounds was determined by evaluating the cure characteristics: scorch time, cure time, and minimum and maximum torque. It has been found that the addition of magnetic fillers does not affect the processability of the composites, whereas the physical properties are modified. The magnetic properties of these composites containing various loadings of the magnetic filler were also investigated. The magnetic properties of RFC can be controlled by the addition of appropriate amount of the ferrite filler.
Resumo:
Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously
Resumo:
Ultra fine nickel ferrite have been synthesized by the sol-gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano-sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X-ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs
Resumo:
Rubber ferrite composites were prepared by incorporating nickel ferrite in a neoprene rubber matrix. Kinetics of the cure reaction were determined from the rheometric torque values and found to follow first-order kinetics. Analysis of the swelling behavior of the rubber ferrite composites in toluene elucidates the mechanism of solvent penetration and sorption characteristics, and reveals the extent of the physical interaction of the ferrite particles with the neoprene rubber matrix. Mechanical properties of rubber ferrite composites were determined, which support the reinforcing nature of nickel ferrite to the neoprene rubber matrix. These results show that magnetic composites with the required processing safety can be prepared economically by incorporating higher amounts of nickel ferrite in the neoprene rubber matrix