79 resultados para Compact Circular Polarization
Resumo:
Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.
Resumo:
The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.
Resumo:
Study of the characteristics of planar loop resonators and their use in the construction of filters at microwave frequencies are presented in this thesis.A detailed investigation of parameters affecting the strength of coupling and the resonant frequency are also carried out .Techniques for size reduction in bandstop and bandpass filters using planar loop resonators are developed.Different configurations of bandstop and bandpass filters using loop resonators are simulated and experimental results on optimal filter configurations are presented.
Resumo:
This thesis presents the Radar Cross Section measurements of different geometric structures such as flat plate,cylinder, corner reflector and circular cone loaded with fractal based metallo dielectric structures.Use of different fractal geometris,metallizations of different shapes as well as the frequency tanability is investigated for TE and TM polarization of the incident electromagnetic field.Application of fractal based metallo-dielectric structures results in RCS reduction over a wide range of frequency bands.RCS enhancement of dihedral corner is observed at certain acute and obtuse corner angles.The experimental results are validated using electromagnetic simulation softwares.
Resumo:
An asymmetric coplanar strip-fed uniplanar antenna for wideband applications is presented. The resulting antenna offers a 2:1 VSWR bandwidth greater than 100% from 1.58 to 5.48 GHz covering the DCS/PCS/IEEE 802.11a/WiMAX bands. The antenna has an overall dimension of 44 × 35 mm2 when printed on a substrate of dielectric constant 4.4 and height 1.6 mm. The design equation is also presented in this article. The antenna exhibits good radiation characteristics and moderate gain in the entire operating band.
Resumo:
A compact, dual band coplanar waveguide fed modified T-shaped uniplanar antenna is presented. The antenna has resonances at 1.77 and 5.54 GHz with a wide band from 1.47–1.97 GHz and from 5.13–6.48 GHz with an impedance bandwidth of 34% and 26%, respectively. Also the antenna has an average gain of 3 dBi in lower band and 3.5 dBi in higher band with an average efficiency of 90%.
Resumo:
A compact dual-band uniplanar antenna for operation in the 2.4/5.2/5.8 GHz WLAN/HIPERLAN2 communication bands is presented. The dual-band antenna is obtained by modifying one of the lateral strips of a slot line, thereby producing two different current paths. The antenna occupies a very small area of 14.5times16.6 mm2 including the ground plane on a substrate having dielectric constant 4.4 and thickness 1.6 mm at 2.2 GHz. The antenna resonates with two bands from 2.2 to 2.52 GHz and from 5 to 10 GHz with good matching, good radiation characteristics and moderate gain
Resumo:
Design of a dual linearly-polarised microstrip patch antenna, excited by two orthogonal microstrip feed lines, is presented. A reduction in patch size of 35% is obtained when compared to a square patch operating at the same frequency. The polarisations are oriented at +45 and - 45 with an isolation of more than 36 dB between the ports. Unlike earlier designs, the proposed structure provides better gain.
Resumo:
Design of a dual-port circular patch antenna with a sector-slot for dual-frequency operation is presented. The antenna resonates at two distinct frequencies with orthogonal polarizations and broad radiation characteristics. Unlike the conventional circular patch, this antenna can be microstrip-fed to operate at either of the resonances. The two polarizations can be simultaneously excited using two electromagnetically coupled ports with an isolation better than −30 dB between the ports. This antenna has the added advantage of size reduction of 44% compared to the conventional circular patch without any reduction in gain.
Resumo:
The design of a compact, single feed, dual frequency dual polarized and electronically reconfigurable microstrip antenna is presented in this paper. A square patch loaded with a hexagonal slot having extended slot arms constitutes the fundamental structure of the antenna. The tuning of the two resonant frequencies is realized by varying the effective electrical length of the slot arms by embedding varactor diodes across the slots. A high tuning range of 34.43% (1.037–1.394 GHz) and 9.27% (1.359–1.485 GHz) is achieved for the two operating frequencies respectively, when the bias voltage is varied from 0 to −30 V. The salient feature of this design is that it uses no matching networks even though the resonant frequencies are tuned in a wide range with good matching below −10 dB. The antenna has an added advantage of size reduction up to 80.11% and 65.69% for the two operating frequencies compared to conventional rectangular patches.
Resumo:
A compact dual-band printed antenna covering the 2.4 GHz (2400-2485 MHz) and 5.2 GHz (5150-5350 MHz) WLAN bands is presented. The experimental analysis shows a 2:1 VSWR bandwidth of up to 32 and 8% for 2.4 and 5.2 GHz, respectively. The measured radiation patterns are nearly omnidirectional, with moderate gain in both the WLAN bands.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.
Resumo:
The need of miniaturization in the present day communication industry is challenging. In the present scenario, printed antenna technology is highly suitable for wireless communication due to its low profile and other desirable radiation characteristics. Small monopole type antennas are overruled by compact small antennas for present day mobile communication applications. Coplanar waveguides (CPW) are printed on one side of a dielectric substrate. CPW have attracted the attention of antenna designers due to their excellent properties like ease of integration with ‘MMIC’, low cost, wide bandwidth, flexibility towards multiband operation, low radiation leakage and less dispersion. The requirement of omnidirectional coverage, light weight and low cost made these CPW fed antennas a good candidate for wireless applications. The main focus of the thesis is the study of coplanar waveguide transmission line. Rigorous investigations were performed on both the ground plane and signal strip of a coplanar waveguide transmission line to create effective radiation characteristics. Good amount of works have been done to transform CPW line to antenna suitable for mobile phone applications
Resumo:
The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated