76 resultados para 3D FIBER DEPOSITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic activity of some of the ABO3 (A = La, Pr and Sm, B= Cr, Mn, Fe, Co and Ni) perovskite-type oxides for the liquid phase reduction of ketone and oxidation of alcohol in 2-propanol medium has been studied. The data have been correlated with the surface electron donor properties of these oxides. The surface electron donor properties have been determined from the adsorption of electron acceptors of varying electron affinities on the oxide surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years,photonics has emerged as an essential technology related to such diverse fields like laser technology,fiber optics,communication,optical signal processing,computing,entertainment,consumer electronics etc.Availabilities of semiconductor lasers and low loss fibers have also revolutionized the field of sensor technology including telemetry. There exist fiber optic sensors which are sensitive,reliable.light weight and accurate devices which find applications in wide range of areas like biomedicine,aviation,surgery,pollution monitoring etc.,apart from areas in basic sciences.The present thesis deals with the design,fabrication and characterization of a variety of cost effective and sensitive fiber optic sensors for the trace detetction of certain environment pollutants in air and water.The sensor design is carried out using the techniques like evanescent waves,micro bending and long period gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser produced plasma from silver is generated using a Q-switched Nd:YAG laser. Optical emission spectroscopy is used to carry out time of flight (TOF) analysis of atomic particles. An anomalous double peak profile in the TOF distribution is observed at low pressure. A collection of slower species emerge at reduced pressure below 4 X lO-3 mbar and this species has a greater velocity spread. At high pressure the plasma expansion follows the shockwave model with cylindrical symmetry whereas at reduced pressure it shows unsteady adiabatic expansion (UAE). During UAE the species show a parabolic increases in the expansion time with radial distance whereas during shock wave expansion the exponent is less than one. The angular distribution of the ablated species in the plume is obtained from the measurement of optical density of thin films deposited on to glass substrates kept perpendicular to the plume. There is a sharp variation in the film thickness away from the film centre due to asymmetries in the plume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fibre optic sensor for the in situ measurement of the rate of deposition of thin films has been developed. Evanescent wave in the uncladded portion of a multimode fibre is utilised for this sensor development. In the present paper we demonstrate how this sensor is useful for the monitoring of the deposition rate of polypyrrole thin films, deposited by an AC plasma polymerisation method. This technique is simple, accurate and highly sensitive compared with existing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate the possibility of using a permanently microbent bare optical fiber for detecting chemical species. Two detection schemes, viz., a bright-field detection scheme (for the core modes), and a dark-field detection scheme (for the cladding modes) have been employed to produce a fiber-optic sensor. The sensor described here is sensitive enough to detect concentrations as low as nanomoles per liter of a chemical species, with a dynamic range of more than 6 orders of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently microbent portion of a plastic optic fiber is coated with a thin film of dye impregnated sol–gel material. The measurements are simultaneously carried out in two independent detection schemes viz., the bright field detection configuration for detecting the core modes and dark field detection configuration, for detecting the cladding modes. The results of measurements of core mode-power and cladding mode-power variation with change in pH of a solution surrounding the coated portion of the fiber is presented. This paper thus demonstrates how a bare plastic fiber can be modified for pH sensing in a simple and cost effective manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, effective and inexpensive fiber optic sensor for investigating the setting characteristics of various grades of cement is described. A finite length of unsheathed multimode optical fiber laid inside the cement mix, is subjected to stress during the setting process. The microbends created on the fiber due to this stress directly influence the intensity of light propagating through the fiber. Continuous monitoring of such variations in the light output transmitted through the fiber gives a clear measure of the setting characteristics of the cement mix, thus providing a simple and elegant technique of great practical importance in the field of civil engineering. The smart fiber optic sensor described above can be incorporated into a building during the construction process itself so that continuous monitoring of the deterioration process for the entire life time of the building can be carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The length-dependent tuning of the fluorescence spectra of a dye doped polymer fiber is reported. The fiber is pumped sideways and the fluorescence is measured from one of the ends. The excitation of a finite length of dye doped fiber is done by a diode pumped solid state laser at a wavelength of 532 nm. The fluorescence emission is measured at various positions of the fiber starting from a position closer to the pumping region and then progressing toward the other end of the fiber. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped fiber are different. At longer distances of propagation, a decrease in optical loss coefficient is observed. The fluorescence peaks exhibit a redshift of 12 nm from 589 to 610 nm as the point of illumination progresses toward the detector end. This is attributed to the self-absorption and re-emission of the laser dye in the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication and characterization of a Rhodamine 6G-doped polymer optical fiber amplifier have been carried out. Two different schemes were employed to characterize the optical fiber: the stripe illumination technique to study the fiber as a gain medium and another technique to study its performance as an amplifier. We observed a spectral narrowing from 42 to 7 nm when the pump energy was increased to 6 mJ in the stripe illumination geometry. A gain of 18 dB was obtained in the amplifier configuration. The effects of pump power and dye concentration on the performance of the fiber as an amplifier were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G-RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm, 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region (60 nm), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm, 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of an appropriate optical-fiber preform is vital for the fabrication of graded-index polymer optical fibers (GIPOF), which are considered to be a good choice for providing inexpensive high bandwidth data links, for local area networks and telecommunication applications. Recent development of the interfacial gel polymerization technique has caused a dramatic reduction in the total attenuation in GIPOF, and this is one of the potential methods to prepare fiber preforms for the fabrication of dye-doped polymer-fiber amplifiers. In this paper, the preparation of a dye-doped graded-index poly(methyl methacrylate) (PMMA) rod by the interfacial gel polymerization method using a PMMA tube is reported. An organic compound of high-refractive index, viz., diphenyl phthalate (DPP), was used to obtain a graded-index distribution, and Rhodamine B (Rh B), was used to dope the PMMA rod. The refractive index profile of the rod was measured using an interferometric technique and the index exponent was estimated. The single pass gain of the rod was measured at a pump wavelength of 532 nm. The extent of doping of the Rh B in the preform was studied by axially exciting a thin slice of the rod with white light and measuring the spatial variation of the fluorescence intensity across the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of two biopolymer based fiber optic humidity sensors is presented in this paper. Sensing elements Agarose and Chitosan swells in the presence of water vapour and undergoes changes in refractive index and modulates the intensity of light propagating through a fiber with Agarose or Chitosan as cladding.