67 resultados para 2014 International Conference on Hydroinformatics HIC
Resumo:
Negative magnetic permeability media (NMPM) can be built up by using small resonant metallic particles like Split ring resonator (SRR) which has very high magnetic polarisability. A group of these particles shows a negative permeability region near and above the resonant frequency. The continuous medium parameters describing the SRR array can be predicted from their individual electromagnetic behavior near the resonances. The paper presents an optimizing software using Genetic Algorithm (GA) to design an edge coupled two ring SRR for a particular frequency
Resumo:
Plasma Science, 2002. ICOPS 2002. IEEE Conference Record-Abstracts. The 29th IEEE International Conference on
Resumo:
The paper summarizes the design and implementation of a quadratic edge detection filter, based on Volterra series, for enhancing calcifications in mammograms. The proposed filter can account for much of the polynomial nonlinearities inherent in the input mammogram image and can replace the conventional edge detectors like Laplacian, gaussian etc. The filter gives rise to improved visualization and early detection of microcalcifications, which if left undetected, can lead to breast cancer. The performance of the filter is analyzed and found superior to conventional spatial edge detectors
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
This paper presents the optimal design of a surface mounted permanent-magnet (PM) Brushless direct-current (BLDC) motor meant for spacecraft applications. The spacecraft applications requires the choice of a motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine configurations viz Slotted PMBLDC and Slotless PMBLDC with Halbach array are compared with the help of analytical and finite element (FE) methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with Halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.
Resumo:
This paper presents the design and analysis of a novel machine family of Siotiess Permanent Magnet Brushless DC motors (PMBLDC) for precise positioning applications of spacecrafts. Initial design, selection of major parameters and air gap magnetic flux density are estimated using the analytical model of the machine. The proportion of the halbach array in the machine was optimized using FE to obtain near trapezoidal flux pattern. The novel machine topology is found to deliver high torque density, high efficiency, zero cogging torque, better positional stability, high torque to inertia ratio and zero magnetic stiction suiting space requirements. The machine provides uniform air gap flux density along the radius thus avoiding circulating currents in stator conductors and hence reducing torque ripple
Resumo:
This work presents a wideband low-distortion sigmadelta analog-to-digital converter (ADC) for Wireless Local Area Network (WLAN) standard. The proposed converter makes use of low-distortion swing suppression SDM architecture which is highly suitable for low oversampling ratios to attain high linearity over a wide bandwidth. The modulator employs a 2-2 cascaded sigma-delta modulator with feedforward path with a single-bit quantizer in the first stage and 4-bit in the second stage. The modulator is designed in TSMC 0.18um CMOS technology and operates at 1.8V supply voltage. Simulation results show that, a peak SNDR of 57dB and a spurious free dynamic range (SFDR) of 66dB is obtained for a 10MHz signal bandwidth, and an oversampling ratio of 8.
Resumo:
This work presents a triple-mode sigma-delta modulator for three wireless standards namely GSM/WCDMA and Bluetooth. A reconfigurable ADC has been used to meet the wide bandwidth and high dynamic range requirements of the multi-standard receivers with less power consumption. A highly linear sigma-delta ADC which has reduced sensitivity to circuit imperfections has been chosen in our design. This is particularly suitable for wide band applications where the oversampling ratio is low. Simulation results indicate that the modulator achieves a peak SNDR of 84/68/68 dB over a bandwidth of 0.2/3.84/1.5 MHz with an oversampling ratio 128/8/8 in GSM/WCDMA/Bluetooth modes respectively
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
Over-sampling sigma-delta analogue-to-digital converters (ADCs) are one of the key building blocks of state of the art wireless transceivers. In the sigma-delta modulator design the scaling coefficients determine the overall signal-to-noise ratio. Therefore, selecting the optimum value of the coefficient is very important. To this end, this paper addresses the design of a fourthorder multi-bit sigma-delta modulator for Wireless Local Area Networks (WLAN) receiver with feed-forward path and the optimum coefficients are selected using genetic algorithm (GA)- based search method. In particular, the proposed converter makes use of low-distortion swing suppression SDM architecture which is highly suitable for low oversampling ratios to attain high linearity over a wide bandwidth. The focus of this paper is the identification of the best coefficients suitable for the proposed topology as well as the optimization of a set of system parameters in order to achieve the desired signal-to-noise ratio. GA-based search engine is a stochastic search method which can find the optimum solution within the given constraints.
Resumo:
In symmetric block ciphers, substitution and diffusion operations are performed in multiple rounds using sub-keys generated from a key generation procedure called key schedule. The key schedule plays a very important role in deciding the security of block ciphers. In this paper we propose a complex key generation procedure, based on matrix manipulations, which could be introduced in symmetric ciphers. The proposed key generation procedure offers two advantages. First, the procedure is simple to implement and has complexity in determining the sub-keys through crypt analysis. Secondly, the procedure produces a strong avalanche effect making many bits in the output block of a cipher to undergo changes with one bit change in the secret key. As a case study, matrix based key generation procedure has been introduced in Advanced Encryption Standard (AES) by replacing the existing key schedule of AES. The key avalanche and differential key propagation produced in AES have been observed. The paper describes the matrix based key generation procedure and the enhanced key avalanche and differential key propagation produced in AES. It has been shown that, the key avalanche effect and differential key propagation characteristics of AES have improved by replacing the AES key schedule with the Matrix based key generation procedure
Resumo:
In this paper, an improved technique for evolving wavelet coefficients refined for compression and reconstruction of fingerprint images is presented. The FBI fingerprint compression standard [1, 2] uses the cdf 9/7 wavelet filter coefficients. Lifting scheme is an efficient way to represent classical wavelets with fewer filter coefficients [3, 4]. Here Genetic algorithm (GA) is used to evolve better lifting filter coefficients for cdf 9/7 wavelet to compress and reconstruct fingerprint images with better quality. Since the lifting filter coefficients are few in numbers compared to the corresponding classical wavelet filter coefficients, they are evolved at a faster rate using GA. A better reconstructed image quality in terms of Peak-Signal-to-Noise-Ratio (PSNR) is achieved with the best lifting filter coefficients evolved for a compression ratio 16:1. These evolved coefficients perform well for other compression ratios also.
Resumo:
Considerable research effort has been devoted in predicting the exon regions of genes. The binary indicator (BI), Electron ion interaction pseudo potential (EIIP), Filter method are some of the methods. All these methods make use of the period three behavior of the exon region. Even though the method suggested in this paper is similar to above mentioned methods , it introduces a set of sequences for mapping the nucleotides selected by applying genetic algorithm and found to be more promising