48 resultados para superconducting transition edge sensors(TES)
Resumo:
The annealing effect on the spectral and nonlinear optical NLO characteristics of ZnO thin films deposited on quartz substrates by sol-gel process is investigated. As the annealing temperature increases from 300–1050 °C, there is a decrease in the band gap, which indicates the changes of the interface of ZnO. ZnO is reported to show two emission bands, an ultraviolet UV emission band and another in the green region. The intensity of the UV peak remains the same while the intensity of the visible peak increases with increase in annealing temperature. The role of oxygen in ZnO thin films during the annealing process is important to the change in optical properties. The mechanism of the luminescence suggests that UV luminescence of ZnO thin films is related to the transition from conduction band edge to valence band, and green luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies. The NLO response of these samples is studied using nanosecond laser pulses at off-resonance wavelengths. The nonlinear absorption coefficient increases from 2.9 ×10−6 to 1.0 ×10−4 m/W when the annealing temperature is increased from 300 to 1050 °C, mainly due to the enhancement of interfacial state and exciton oscillator strength. The third order optical susceptibility x(3) increases with increase in annealing temperature (T) within the range of our investigations. In the weak confinement regime, T2.4 dependence of x(3) is obtained for ZnO thin films. The role of annealing temperature on the optical limiting response is also studied.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
Advent of lasers together with the advancement in fiber optics technology has revolutionized the sensor technology. Advancement in the telemetric applications of optical fiber based measurements is an added bonus. The present thesis describes variety of fiber based sensors using techniques like micro bending, long period grating and evanescent waves. Sensors to measure various physical and chemical parameters are described in this thesis.
Resumo:
We are in the cutting edge of a new era of development without leaving any promises to next generation. But the scale and size of the problem are only partially blamed. The juggernaut of Globalisation has trampled upon whatever little hope we might have had making a quick transition to a less energy – intensive world. “Environment friendliness begins at home”. Our quest for productivity and profitability should progress simultaneous with our cooperative responsibility of leaving behind a clean and green earth for the generation to come. Climate change is the most pressing global environmental challenge being faced by humanity, with the quest for better productivity for our fragile ecosystem. It is too late to rely solely on reduction in Green house gas emissions to mitigate climate change although this is undoubtedly crucial. Coastal belts are more prone to these devastating impacts and its protection is an intensive filed of research. The present study describes how the colourful Carotenoids and Chlorophylls can be used in rapid hand on tool in conjunction with molecular biology to open sources and it also explores the fate of organic matter in the aquatic system and underlying sediments.
Resumo:
Department of Applied chemistry, Cochin University of Science and Technology
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
In the present work, we have tried to evaluate systematically the surface properties of sulphated tin oxide systems modified with three different transition metal oxides viz. iron oxide, tungsten oxide and molybdenum oxide. The catalytic activities of these systems are checked and compared by carrying out some industrially important reactions such as oxidative dehydrogenation of ethylbenzene and Friedel-Crafts reactions.
Resumo:
The catalytic activity of Perovskite-type mixed oxides (LaCo03 . PrCo03 and SmCo03 ) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-Ponndorf-Verley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides.
Resumo:
This thesis deals with the synthesis and charcterisation of some supported transition metal complexes and their catalytic properties. Two industrially important reactions were carried out: i) cyclohexanol oxidation and ii) hydrodesulphurization of diesel. Thesis is divided into nine chapters. An overview of the heterogenised homogeneous systems is given in Chapter 1. Chapter 2 deals with the materials and methods used for the preparation and characterisation. Details regarding the synthesis and characterisation of zeolite encapsulated transition metal complexes are given in Chapter 3 to Chapter 7. In Chapter 8, the results of catalytic activity studies of the cyclohexanol oxidation using the zeolite encapsulated complexes are presented. Details of preparation of hydrodesulphurization catalysts through the molecular designed dispersion method, their characterization and catalytic activity studies are presented in Chapter 9. References are given at the end of the thesis.
Studies on some supported transition metal complex and metal oxide catalysts for oxidation reactions
Resumo:
Zeolite encapsulated transition metal complexes have received wide attention as an effective heterogenized system that combines the tremendous activity of the metal complexes and the attractive features of the zeolite structure. Zeolite encapsulated complexes offer a bright future for attempts to replace homogeneous systems retaining its catalytic activity and minimizing the technical problems. especially for the partial oxidation of organic compounds. Studies on some zeolite encapsulated transition metal complexes are presented in this thesis. The ligands selected are technically important in a bio-mimetic or structural perspective. Attempts have been made in this study to investigate the composition, structure and stability of encapsulated complexes using available techniques. The catalytic activity of encapsulated complexes was evaluated for the oxidation of some organic compounds. The recycling ability of the catalyst as a result of the encapsulation was also studied.Our studies on Cu-Cr/Al2O3, a typical metal oxide catalyst. illustrate the use of design techniques to modify the properties of such conventional catalysts. The catalytic activity of this catalyst for the oxidation of carbon monoxide was measured. The effect of additives like Ce02 or Ti02 on the activity and stability of this system was also investigated. The additive is potent to improve the activity and stability ofthe catalyst so as to be more effective in commercial usage.
Resumo:
Transition metal-loaded (3%) nanocrystalline sulfated titania (ST) powders are prepared using the sol–gel technique. Anatase is found as the active phase in all the samples. Sulfate ion impregnation decreases the crystallite size and stabilizes the anatase phase of TiO2. Acidity of the samples is found to increase by the incorporation of sulfate ion and also by the modification by transition metal ions. All the prepared catalysts are found stable up to 700 °C.
Resumo:
The present project was a systematic investigation of the physico-chemical properties and catalytic activity of some transition metal promoted sulphated zirconia systems. The characterisation and catalytic activity results were compared with that of pure Zr02 and simple sulphated zirconia systems. Sulphated zirconia samples were prepared by a controlled impregnation technique. In the case of metal incorporated systems, a single step impregnation was carried out using required amounts of sulphuric acid and metal salt solutions. As a preliminary step, optimisation of calcination temperature and sulphate content was achieved. For further studies, the optimised sulphate loading of 10 ml per gram of hydrous zirconium oxide and a calcination temperature of 700°C was employed. Metal incorporation had a positive influence on the physico-chemical properties. Vapour phase cumene conversion served as a test reaction for acidity. Some industrially important reactions like Friedel-Crafts reaction, phenol hydroxylation, nitration, etc. were selected to test the catalytic activity of the prepared systems.
Resumo:
The catalytic activity of some of the ABO3 (A = La, Pr and Sm, B= Cr, Mn, Fe, Co and Ni) perovskite-type oxides for the liquid phase reduction of ketone and oxidation of alcohol in 2-propanol medium has been studied. The data have been correlated with the surface electron donor properties of these oxides. The surface electron donor properties have been determined from the adsorption of electron acceptors of varying electron affinities on the oxide surface.
Resumo:
In recent years,photonics has emerged as an essential technology related to such diverse fields like laser technology,fiber optics,communication,optical signal processing,computing,entertainment,consumer electronics etc.Availabilities of semiconductor lasers and low loss fibers have also revolutionized the field of sensor technology including telemetry. There exist fiber optic sensors which are sensitive,reliable.light weight and accurate devices which find applications in wide range of areas like biomedicine,aviation,surgery,pollution monitoring etc.,apart from areas in basic sciences.The present thesis deals with the design,fabrication and characterization of a variety of cost effective and sensitive fiber optic sensors for the trace detetction of certain environment pollutants in air and water.The sensor design is carried out using the techniques like evanescent waves,micro bending and long period gratings.
Resumo:
Voltammetric sensors are an important class of electrochemical sensors in which the analytical information is obtained from the measurement of current obtained as a result of electrochemical oxidation/reduction.This current is proportional to the concentration of the analyte.Chemically modified electrodes(CMEs) have great significance as important analytical tools for the electrochemical determination of pharmaceuticals.The modification of electrode results in efficient determination of electro-active biomolecules at very lower potential without its major interferences.The operation mechanism of CMEs depends on the properties of the modifier materials that are used to promote selectivity towards the target analytes.Modified electrodes can be prepared by deposition of various compounds such as organic compounds ,conducting polymers,metal oxides,etc. on the various electrode surfaces.The thesis presents the development ,electrochemical characterization and analytical application studies of eight voltammetric sensors developed for six drugs viz.,Ambroxol,Sulfamethoxazole,PAM Chloride, Lamivudine,Metronidazole and Nimesulide.The modification techniques adopted as part of the present work include Multiwalled Carbon Nanotube(MWCNT) based modification.Electropolymerisation and Gold Nanoparticle (AuNP) based modifications.